Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 19(10): e2205959, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36564359

RESUMEN

Metal-free 2D phosphorus-based materials are emerging catalysts for ammonia (NH3 ) production through a sustainable electrochemical nitrogen reduction reaction route under ambient conditions. However, their efficiency and stability remain challenging due to the surface oxidization. Herein, a stable phosphorus-based electrocatalyst, silicon phosphide (SiP), is explored. Density functional theory calculations certify that the N2 activation can be realized on the zigzag Si sites with a dimeric end-on coordinated mode. Such sites also allow the subsequent protonation process via the alternating associative mechanism. As the proof-of-concept demonstration, both the crystalline and amorphous SiP nanosheets (denoted as C-SiP NSs and A-SiP NSs, respectively) are obtained through ultrasonic exfoliation processes, but only the crystalline one enables effective and stable electrocatalytic nitrogen reduction reaction, in terms of an NH3 yield rate of 16.12 µg h-1  mgcat. -1 and a Faradaic efficiency of 22.48% at -0.3 V versus reversible hydrogen electrode. The resistance to oxidization plays the decisive role in guaranteeing the NH3 electrosynthesis activity for C-SiP NSs. This surface stability endows C-SiP NSs with the capability to serve as appealing electrocatalysts for nitrogen reduction reactions and other promising applications.

2.
Nat Commun ; 13(1): 7225, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433983

RESUMEN

Grain boundary controlling is an effective approach for manipulating the electronic structure of electrocatalysts to improve their hydrogen evolution reaction performance. However, probing the direct effect of grain boundaries as highly active catalytic hot spots is very challenging. Herein, we demonstrate a general water-assisted carbothermal reaction strategy for the construction of ultrathin Mo2C nanosheets with high-density grain boundaries supported on N-doped graphene. The polycrystalline Mo2C nanosheets are connected with N-doped graphene through Mo-C bonds, which affords an ultra-high density of active sites, giving excellent hydrogen evolution activity and superior electrocatalytic stability. Theoretical calculations reveal that the dz2 orbital energy level of Mo atoms is controlled by the MoC3 pyramid configuration, which plays a vital role in governing the hydrogen evolution activity. The dz2 orbital energy level of metal atoms exhibits an intrinsic relationship with the catalyst activity and is regarded as a descriptor for predicting the hydrogen evolution activity.

3.
Front Chem ; 10: 832972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237561

RESUMEN

Big progress has been made in batteries based on an intercalation mechanism in the last 20 years, but limited capacity in batteries hinders their further increase in energy density. The demand for more energy intensity makes research communities turn to conversion-type batteries. Thermal batteries are a special kind of conversion-type battery, which are thermally activated primary batteries composed mainly of cathode, anode, separator (electrolyte), and heating mass. Such kinds of battery employ an internal pyrotechnic source to make the battery stack reach its operating temperature. Thermal batteries have a long history of research and usage in military fields because of their high specific capacity, high specific energy, high thermal stability, long shelf life, and fast activation. These experiences and knowledge are of vital importance for the development of conversion-type batteries. This review provides a comprehensive account of recent studies on cathode materials. The paper covers the preparation, characterization of various cathode materials, and the performance test of thermal batteries. These advances have significant implications for the development of high-performance, low-cost, and mass production conversion-type batteries in the near future.

4.
Nano Lett ; 21(11): 4845-4852, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038135

RESUMEN

Precise manipulation of the interactions between different components represents the frontier of heterostructured electrocatalysts and is crucial to understanding the structure-function relationship. Current studies, however, are quite limited. Here, we report targeted modulation of the atomic-level interface chemistry of Pt/NiO heterostructure via an annealing treatment, which results in substantially enhanced hydrogen electrocatalysis kinetics in alkaline media. Specifically, the optimized Pt/NiO heterostructure delivers by far the highest specific exchange current density of 8.1 mA cmPt-2 for hydrogen oxidation reaction. X-ray spectroscopy results suggest Pt-Ni interfacial bonds are formed after annealing, inducing more significant electron transfer from NiO to Pt. Also, the regulated interface chemistry, as proven by theoretical calculations, optimizes the binding behaviors of hydrogen and hydroxyl species. These findings emphasize the importance of interface engineering at the atomic level and inspire further explorations of heterostructured electrocatalysts.

5.
J Am Chem Soc ; 143(15): 5717-5726, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843219

RESUMEN

Li+-conductive ceramic oxide electrolytes, such as garnet-structured Li7La3Zr2O12, have been considered as promising candidates for realizing the next-generation solid-state Li-metal batteries with high energy density. Practically, the ceramic pellets sintered at elevated temperatures are often provided with high stiffness yet low fracture toughness, making them too brittle for the manufacture of thin-film electrolytes and strain-involved operation of solid-state batteries. The ceramic powder, though provided with ductility, does not yield satisfactorily high Li+ conductivity due to poor ion conduction at the boundaries of ceramic particles. Here we show, with solid-state nuclear magnetic resonance, that a uniform conjugated polymer nanocoating formed on the surface of ceramic oxide particles builds pathways for Li+ conduction between adjacent particles in the unsintered ceramics. A tape-casted thin-film electrolyte (thickness: <10 µm), prepared from the polymer-coated ceramic particles, exhibits sufficient ionic conductivity, a high Li+ transference number, and a broad electrochemical window to enable stable cycling of symmetric Li/Li cells and all-solid-state rechargeable Li-metal cells.

6.
Adv Mater ; 33(15): e2008560, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33687776

RESUMEN

By virtue of strong molecular interactions, eutectic electrolytes provide highly concentrated redox-active materials without other auxiliary solvents, hence achieving high volumetric capacities and energy density for redox flow batteries (RFBs). However, it is critical to unveil the underlying mechanism in this system, which will be undoubtedly beneficial for their future research on high-energy storage systems. Herein, a general formation mechanism of organic eutectic electrolytes (OEEs) is developed, and it is found that molecules with specific functional groups such as carbonyl (CO), nitroxyl radical (NO•), and methoxy (OCH3 ) groups can coordinate with alkali metal fluorinated sulfonylimide salts (especially for bis(trifluoromethanesulfonyl)imide, TFSI), thereby forming OEEs. Molecular designs further demonstrate that the redox-inactive methoxy group functionalized ferrocene derivative maintains the liquid OEE at both reduced and oxidized states. Over threefold increase in solubility is obtained (2.8 m for ferrocene derivative OEE) and high actual discharge energy density of 188 Wh L-1 (75% of the theoretical value) is achieved in the Li hybrid cell. The established mechanism presents new ways of designing desirable electrolytes through molecular interactions for the development of high-energy-density organic RFBs.

7.
Angew Chem Int Ed Engl ; 60(8): 4275-4281, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33197124

RESUMEN

To achieve the electrochemical nitrogen reduction reaction (NRR) for efficient and sustainable NH3 production, catalysts should exhibit high selectivity and activity with optimal adsorption energy. Herein we developed a three-dimensional (3D) amorphous BiNi alloy toward a significantly enhanced NRR compared with its crystalline and metal counterparts. Ni alloying enables the chemisorption of nitrogen and the lower free-energy change for the *NNH formation, and the 3D alloy electrocatalyst exhibits high catalytic activity for NH3 production with a yield rate of 17.5 µg h-1 mgcat -1 and Faradaic efficiency of 13.8 %. The enhanced electron transfer and increased electrochemical surface area were revealed in the interconnected porous scaffold, affording it sufficiently efficient and stable activity for potential practical applications. This work offers new insights into optimizing the adsorption energy of reactants and intermediates combined with tuning the crystallinity of NRR electrocatalysts.

8.
ACS Cent Sci ; 6(12): 2287-2293, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33376789

RESUMEN

The sustainable future of modern society relies on the development of advanced energy systems. Alkali metals, such as Li, Na, and K, are promising to construct high-energy-density batteries to complement the fast-growing implementation of renewable sources. The stripping/deposition of alkali metals is compromised by serious dendrite growth, which can be intrinsically eliminated by using molten alkali metal anodes. Up to now, most of the conventional molten alkali metal-based batteries need to be operated at high temperatures. To decrease the operating temperature, we extended the battery chemistry to multielement alloys, which provide more flexibility for wide selection and rational screening of cost-effective and fusible metallic electrodes. On the basis of an integrated experimental and theoretical study, the depressed melting point and enhanced interfacial compatibility are elucidated. The proof-of-concept molten sodium battery enabled by the Bi-Pb-Sn fusible alloy not only circumvents the use of costly Ga and In elements but also delivers attractive performance at 100 °C, holding great promise for grid-scale energy storage.

9.
ACS Nano ; 14(10): 13824-13833, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32857490

RESUMEN

Hydrated layered solids are interesting charge storage hosts with potentially high electrochemical activity and interlayer tunability. Although it is often possible to tune their interlayer distance by a pillaring strategy, the poor electrochemical stability of such artificial structures remains a major issue in device operation. Here we investigate the charge storage properties of MOPO4 (M = V, Nb) hydrates with a nanosheet morphology to understand the influence of the interlayer environment on cycling stability, as well as ion selectivity. While in hydrated VOPO4 interlayer H2O molecules act as compressible springs to enable fast Li-/Na-ion transport kinetics and reasonable structural reversibility, NbOPO4 layers with bridging PO4 groups serving as permanent linkers exhibit highly stable cyclability for Li-ions, owing to a zero-volume-change ion transport process. However, the latter suffers from a much larger migration energy barrier for Na-ions. Our findings not only highlight a structurally intriguing material system, but also provide insights into reviving materials with an originally unstable interlayer chemical environment, and shed light on the design principles for creating electrochemically stable charge storage hosts.

10.
Angew Chem Int Ed Engl ; 59(49): 22163-22170, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841494

RESUMEN

Aqueous redox flow batteries (RFBs) are promising alternatives for large-scale energy storage. However, new organic redox-active molecules with good chemical stability and high solubility are still desired for high-performance aqueous RFBs due to their low crossover capability and high abundance. We report azobenzene-based molecules with hydrophilic groups as new active materials for aqueous RFBs by utilizing the reversible redox activity of azo groups. By rationally tailoring the molecular structure of azobenzene, the solubility is favorably improved from near zero to 2 M due to the highly charged asymmetric structure formed in alkaline environment. DFT simulations suggest that the concentrated solution stability can be enhanced by adding hydrotropic agent to form intermolecular hydrogen bonds. The demonstrated RFB exhibits long cycling stability with a capacity retention of 99.95 % per cycle over 500 cycles. It presents a viable chemical design route towards advanced aqueous RFBs.

11.
Nat Commun ; 11(1): 3843, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737297

RESUMEN

Redox-active organic molecules have drawn extensive interests in redox flow batteries (RFBs) as promising active materials, but employing them in nonaqueous systems is far limited in terms of useable capacity and cycling stability. Here we introduce azobenzene-based organic compounds as new active materials to realize high-performance nonaqueous RFBs with long cycling life and high capacity. It is capable to achieve a stable long cycling with a low capacity decay of 0.014% per cycle and 0.16% per day over 1000 cycles. The stable cycling under a high concentration of 1 M is also realized, delivering a high reversible capacity of ~46 Ah L-1. The unique lithium-coupled redox chemistry accompanied with a voltage increase is observed and revealed by experimental characterization and theoretical simulation. With the reversible redox activity of azo group in π-conjugated structures, azobenzene-based molecules represent a class of promising redox-active organics for potential grid-scale energy storage systems.

12.
Sci Adv ; 6(23): eaba6586, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32548271

RESUMEN

Single-atom catalysts (SACs) maximize the utility efficiency of metal atoms and offer great potential for hydrogen evolution reaction (HER). Bimetal atom catalysts are an appealing strategy in virtue of the synergistic interaction of neighboring metal atoms, which can further improve the intrinsic HER activity beyond SACs. However, the rational design of these systems remains conceptually challenging and requires in-depth research both experimentally and theoretically. Here, we develop a dual-atom catalyst (DAC) consisting of O-coordinated W-Mo heterodimer embedded in N-doped graphene (W1Mo1-NG), which is synthesized by controllable self-assembly and nitridation processes. In W1Mo1-NG, the O-bridged W-Mo atoms are anchored in NG vacancies through oxygen atoms with W─O─Mo─O─C configuration, resulting in stable and finely distribution. The W1Mo1-NG DAC enables Pt-like activity and ultrahigh stability for HER in pH-universal electrolyte. The electron delocalization of W─O─Mo─O─C configuration provides optimal adsorption strength of H and boosts the HER kinetics, thereby notably promoting the intrinsic activity.

13.
Adv Mater ; 32(30): e2002577, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32548922

RESUMEN

Liquid metal batteries are regarded as potential electrochemical systems for stationary energy storage. Currently, all reported liquid metal batteries need to be operated at temperatures above 240 °C to maintain the metallic electrodes in a molten state. Here, an unprecedented room-temperature liquid metal battery employing a sodium-potassium (Na-K) alloy anode and gallium (Ga)-based alloy cathodes is demonstrated. Compared with lead (Pb)- and mercury (Hg)-based liquid metal electrodes, the nontoxic Ga alloys maintain high environmental benignity. On the basis of improved wetting and stabilized interfacial chemistry, such liquid metal batteries deliver stable cycling performance and negligible self-discharge. Different from the conventional interphase between a typical solid electrode and a liquid electrolyte, the interphase between a liquid metal and a liquid electrolyte is directly visualized via advanced 3D chemical analysis. Insights into this new type of liquid electrode/electrolyte interphase reveal its important role in regulating charge carriers and stabilizing the redox chemistry. With facile cell fabrication, simplified battery structures, high safety, and low maintenance costs, room-temperature liquid metal batteries not only show great prospects for widespread applications, but also offer a pathway toward developing innovative energy-storage devices beyond conventional solid-state batteries or high-temperature batteries.

14.
Angew Chem Int Ed Engl ; 59(34): 14533-14540, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32485085

RESUMEN

Designing cost-effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active-center-transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2 ) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co-catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co-catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm-2 for HER and OER in alkaline medium, respectively.

15.
Angew Chem Int Ed Engl ; 59(29): 12170-12177, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32315509

RESUMEN

Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room-temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid-electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self-healing features of liquid metals. The proof-of-concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next-generation dendrite-free batteries.

16.
Angew Chem Int Ed Engl ; 59(10): 4131-4137, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31893468

RESUMEN

Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4  S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.

17.
Phys Chem Chem Phys ; 21(29): 16282-16287, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31304504

RESUMEN

Antibiotic contamination in water has become an increasingly serious problem that poses a potentially huge threat to human health. Ofloxacin (OFL) is a typical broad-spectrum quinolone antibiotic and is frequently detected in a wide variety of aquatic environments. Given its frequent contamination, the need for new electrochemical sensors to quickly and efficiently detect OFL in aquatic environments has attracted increasing attention. Solution pH is an important factor affecting the performance of electrochemical sensors. This work investigates OFL detection using graphene/glassy carbon electrodes (Gr/GCE) in phosphate-buffered saline across a range of pH (3-8). The molecular polarity analysis method was first used to reveal interactions between target contaminants and the electrode interface. The electrode properties and the polarity of OFL were studied using SEM, XPS, FT-IR spectrometry, zeta potentiometry and modelling calculation of molecular properties. Our results showed that OFL interacts with the surface of Gr/GCE via both hydrogen bonding and coulomb electrostatic forces. The electrical signal decreased more quickly in an alkaline than acidic environment, which was due to the differences between coulomb electrostatic and hydrogen bonding forces. These results also showed variations in the OFL peak current response under different pH conditions. Collectively, these findings provide a better foundation for the rapid identification of the optimal pH environment for the electrical analysis of contaminants like antibiotics in an aquatic environment.

18.
Angew Chem Int Ed Engl ; 58(21): 7045-7050, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30938026

RESUMEN

One promising candidate for high-energy storage systems is the nonaqueous redox flow battery (NARFB). However, their application is limited by low solubility of redox-active materials and poor performance at high current density. Reported here is a new strategy, a biredox eutectic, as the sole electrolyte for NARFB to achieve a significantly higher concentration of redox-active materials and enhance the cell performance. Without other auxiliary solvents, the biredox eutectic electrolyte is formed directly by the molecular interactions between two different redox-active molecules. Such a unique electrolyte possesses high concentration with low viscosity (3.5 m, for N-butylphthalimide and 1,1-dimethylferrocene system) and a relatively high working voltage of 1.8 V, enabling high capacity and energy density of NARFB. The resulting high-performance NARFB demonstrates that the biredox eutectic based strategy is potentially promising for low-cost and high-energy storage systems.

19.
Adv Mater ; 31(11): e1806956, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663151

RESUMEN

Despite the high specific capacity and low redox potential of alkali metals, their practical application as anodes is still limited by the inherent dendrite-growth problem. The fusible sodium-potassium (Na-K) liquid metal alloy is an alternative that detours this drawback, but the fundamental understanding of charge transport in this binary electroactive alloy anode remains elusive. Here, comprehensive characterization, accompanied with density function theory (DFT) calculations, jointly expound the Na-K anode-based battery working mechanism. With the organic cathode sodium rhodizonate dibasic (SR) that has negligible selectivity toward cations, the charge carrier is screened by electrolytes due to the selective ionic pathways in the solid electrolyte interphase (SEI). Stable cycling for this Na-K/SR battery is achieved with capacity retention per cycle to be 99.88% as a sodium-ion battery (SIB) and 99.70% as a potassium-ion battery (PIB) for over 100 cycles. Benefitting from the flexibility of the liquid metal and the specially designed carbon nanofiber (CNF)/SR layer-by-layer cathode, a flexible dendrite-free alkali-ion battery is achieved with an ultrahigh areal capacity of 2.1 mAh cm-2 . Computation-guided materials selection, characterization-supported mechanistic understanding, and self-validating battery performance collectively promise the prospect of a high-performance, dendrite-free, and versatile organic-based liquid metal battery.

20.
ACS Appl Mater Interfaces ; 10(49): 42380-42386, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30461267

RESUMEN

Room-temperature sodium-ion batteries (NIBs) using a manganese-based layered cathode have been considered promising candidates for grid-scale energy storage applications. However, manganese-based materials suffer from serious Jahn-Teller distortion, phase transition, and unstable interface, resulting in severe structure degradation, sluggish sodium diffusion kinetics, and poor cycle, respectively. Herein, we demonstrate a Zr-doped Na0.70Mn0.80Co0.15Zr0.05O2 material with much improved specific capacity and rate capability compared with Zr-free Na0.70Mn0.85Co0.15O2 when used as cathode materials for NIBs. The material delivers a reversible capacity of 173 mA h g-1 at 0.1 C rate, corresponding to approximately 72% of the theoretical capacity (239 mA h g-1) based on a single-electron redox process, and a capacity retention of 88% after 50 cycles was obtained. Additionally, a homogenous solid-state interphase (SEI) film was revealed directly by high-resolution transmission electron microscopy in Zr-doped material after battery cycling. Electrochemical impedance spectroscopy proves that the formation of SEI films provides the Zr-doped material with special chemical/electrochemical stability. These results here give clear evidence of the utility of Zr-doping to improve the surface and environmental stability, sodium diffusion kinetics, and electrochemical performance of P2-type layered structure, promising advanced sodium-ion batteries with higher energy density, higher surface stability, and longer cycle life compared with the commonly used magnesiumdoping method in electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...