Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Elife ; 122024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415809

RESUMEN

Despite intense research on mice, the transcriptional regulation of neocortical neurogenesis remains limited in humans and non-human primates. Cortical development in rhesus macaque is known to recapitulate multiple facets of cortical development in humans, including the complex composition of neural stem cells and the thicker supragranular layer. To characterize temporal shifts in transcriptomic programming responsible for differentiation from stem cells to neurons, we sampled parietal lobes of rhesus macaque at E40, E50, E70, E80, and E90, spanning the full period of prenatal neurogenesis. Single-cell RNA sequencing produced a transcriptomic atlas of developing parietal lobe in rhesus macaque neocortex. Identification of distinct cell types and neural stem cells emerging in different developmental stages revealed a terminally bifurcating trajectory from stem cells to neurons. Notably, deep-layer neurons appear in the early stages of neurogenesis, while upper-layer neurons appear later. While these different lineages show overlap in their differentiation program, cell fates are determined post-mitotically. Trajectories analysis from ventricular radial glia (vRGs) to outer radial glia (oRGs) revealed dynamic gene expression profiles and identified differential activation of BMP, FGF, and WNT signaling pathways between vRGs and oRGs. These results provide a comprehensive overview of the temporal patterns of gene expression leading to different fates of radial glial progenitors during neocortex layer formation.


Asunto(s)
Neocórtex , Células-Madre Neurales , Femenino , Embarazo , Animales , Ratones , Transcriptoma , Macaca mulatta , Perfilación de la Expresión Génica
2.
Signal Transduct Target Ther ; 9(1): 32, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351062

RESUMEN

The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Axones/metabolismo , Axones/patología , Neuronas/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Transducción de Señal/genética
3.
FEBS Open Bio ; 14(1): 138-147, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953466

RESUMEN

Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.


Asunto(s)
Vesículas Extracelulares , Glioma , Humanos , Células Endoteliales/metabolismo , Glioma/genética , Glioma/metabolismo , Transporte Biológico , Vesículas Extracelulares/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
4.
EMBO J ; 42(22): e113383, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37807845

RESUMEN

Notch signaling pathway activity, particularly fluctuations in the biologically active effector fragment NICD, is required for rapid and efficient dynamic regulation of proper fate decisions in stem cells. In this study, we identified NEDD4-binding protein 1 (N4BP1), which is highly expressed in the developing mouse cerebral cortex, as a negative modulator of Notch signaling dynamics in neural progenitor cells. Intriguingly, N4BP1 regulated NICD stability specifically after Notch1 S3 cleavage through ubiquitin-mediated degradation that depended on its RAM domain, not its PEST domain, as had been extensively and previously described. The CoCUN domain in N4BP1, particularly the "Phe-Pro" motif (862/863 amino acid), was indispensable for mediating NICD degradation. The Ring family E3 ligase Trim21 was, in contrast to other NEDD4 family members, required for N4BP1-regulated NICD degradation. Overexpression of N4BP1 in cortical neural progenitors promoted neural stem cell differentiation, whereas neural progenitor cells lacking N4BP1 were sensitized to Notch signaling, resulting in the maintenance of stem-like properties in neural progenitor cells and lower production of cortical neurons.


Asunto(s)
Neocórtex , Células-Madre Neurales , Animales , Ratones , Diferenciación Celular/fisiología , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología
5.
FASEB J ; 37(6): e22970, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37184041

RESUMEN

Nectin-like family members (Necls) are involved in synaptic organization. In contrast to that of Necl-2/CADM1/SynCAM1, which is critical in synaptic events, investigation of Necl-4/CADM4/SynCAM4 in synapses has largely lagged behind given the particularity of homophilic self-interactions compared to interactions with other Necls. We sought to further understand the role of Necl-4 in synapses and found that knockout of Necl-4 led to aberrant expression levels of proteins mediating synaptic function in cortex homogenates and augmented accumulation of ionotropic glutamate receptor in postsynaptic density fractions, although a compensatory effect of Necl-1 on the expression levels existed. Concurrently, we also found increased synaptic clefts in the cortex and simplified dendritic morphology of primary cultured cortical neurons. Experiments on individual behaviors suggested that compared to their wild-type littermates, Necl-4-KO mice exhibited impaired acquisition of spatial memory and working memory and enhanced behavioral despair and anxiety-like behavior. These findings suggest that Necl-4 mediates synaptic function and related behaviors through an indispensable role and offer a new perspective about collaboration and specialization among Necls.


Asunto(s)
Moléculas de Adhesión Celular , Neuronas , Ratones , Animales , Nectinas/genética , Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo
6.
iScience ; 25(8): 104823, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992092

RESUMEN

Serine hydroxymethyltransferase 2 (SHMT2), which catalyzes the conversion of serine to glycine and one-carbon transfer reactions in mitochondria, is significantly upregulated in glioblastoma (GBM). However, the mechanism by which the stability of SHMT2 gene expression is maintained to drive GBM tumorigenesis has not been clarified. Herein, through microarray screening, we identified that HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) modulates the SHMT2 level in various GBM cell lines. Serine catabolism and mitochondrial oxidative phosphorylation activities were decreased by HOTAIRM1 inhibition. Mechanistically, according to our mass spectrometry and eCLIP-seq results, HOTAIRM1 can bind to PTBP1 and IGF2BP2. Furthermore, HOTAIRM1 maintains the stability of SHMT2 by promoting the recognition of an m6A site and the interaction of PTBP1/IGF2BP2 with SHMT2 mRNA. The stability of HOTAIRM1 can also be enhanced and results in positive feedback regulation to support the progression of GBM. Thus, targeting HOTAIRM1 could be a promising metabolic therapy for GBM.

7.
Cells ; 11(9)2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563756

RESUMEN

ASH2L and DPY30 are important for the assembly and catalytic activity of the complex associated with SET1 (COMPASS), which catalyzes histone methylation and regulates gene expression. However, the regulations among COMPASS components are not fully understood. Here, we leveraged a mouse model and cell lines to observe the outcome of Ash2l depletion and found a significant decrease in DPY30. Analyzing ASH2L ChIP-seq and RNA-seq data excluded transcriptional and translational regulation of ASH2L to DPY30. The decrease in DPY30 was further attributed to the degradation via the ubiquitin-mediated proteasomal pathway. We also verified that three amino acids in the ASH2L Sdc1 DPY30 interaction (SDI) domain are essential for the recognition and binding of DPY30. Lastly, we unexpectedly observed that overexpression of DPY30 in Ash2l-depleted cells rescued the decrease in Ccnd1 and the abnormal cell cycle, which indicates that DPY30 can participate in other complexes to regulate gene expression. Overall, our results, for the first time, reveal that the existence of DPY30 relies on the binding with ASH2L, with degradation of DPY30 via the ubiquitin-proteasome system, and they further indicate that the function of DPY30 can be independent of ASH2L.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Factores de Transcripción/química , Ubiquitinas/metabolismo
8.
Cereb Cortex ; 32(8): 1668-1681, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34550336

RESUMEN

Emx1IRES-Cre, D6-Cre and hGFAP-Cre are commonly used to conditionally manipulate gene expression or lineage tracing because of their specificity in the dorsal telencephalon during early neurogenesis as previously described. However, the spatiotemporal differences in Cre recombinase activity would lead to divergent phenotypes. Here, we compared the patterns of Cre activity in the early embryos among the three lines by mating with reporter mice. The activities of Emx1IRES-Cre, D6-Cre and hGFAP-Cre were observed in the dorsal telencephalon, starting from approximately embryonic day 9.5, 11.5 and 12.5, respectively. Although all the three lines have activity in radial glial cells, Emx1IRES-Cre fully covers the dorsal and medial telencephalon, including the archicortex and cortical hem. D6-Cre is highly restricted to the dorsal telencephalon with anterior-low to posterior-high gradients, partially covers the hippocampus, and absent in the cortical hem. Moreover, both Emx1IRES-Cre and hGFAP-Cre exhibit Cre activity outside the dorsal neocortex. Meanwhile, we used the three Cre lines to mediate Dicer knockout and observed inconsistent phenotypes, including discrepancies in radial glial cell number, survival and neurogenesis in the neocortex and hippocampus. Together we proved differences in Cre activity can perturb the resultant phenotypes, which aid researchers in appropriate experimental design.


Asunto(s)
Neocórtex , Animales , Hipocampo/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Neocórtex/metabolismo , Neurogénesis
9.
Emerg Microbes Infect ; 10(1): 1988-1999, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34511027

RESUMEN

ABSTRACTEnterovirus A71 (EV-A71) can cause hand, foot and mouth disease with neurological and systemic complications, most frequently affecting children and infants. We describe a cis-acting replication element (cre) with a conserved stem-loop structure within the EV-A71 2C-coding region. By site-directed mutagenesis and reverse genetics using the EV-A71 full-length genome and the EV-A71 replicon containing the firefly luciferase reporter gene in place of the P1 region, the stem-loop structure and the AAACA in the loop of the cre were confirmed to be required for the EV-A71 replication phenotype. EV-A71 genomes containing a mutation at the first or third A residue of AAACA could not be recovered. Insertion of a wild-type cre from EV-A71 or poliovirus in the 5'UTR led to successful recovery of the replication of nonviable mutants. Furthermore, the cre mutants showed lower binding capacity with the host cellular factor IGF2BP2, knockdown of which resulted in a significant decrease in EV-A71 production. All the available evidence shows the location independence but functional importance of the interaction of the cre with the cellular host for efficient production of EV-A71, contributing to the growing body of knowledge regarding picornavirus cres.


Asunto(s)
Enterovirus Humano A/genética , Genoma Viral/genética , Secuencias Repetitivas Esparcidas/genética , Conformación de Ácido Nucleico , ARN Viral/genética , Replicación Viral/genética , Animales , Línea Celular , Chlorocebus aethiops , Enterovirus Humano A/crecimiento & desarrollo , Infecciones por Enterovirus/virología , Enfermedad de Boca, Mano y Pie/virología , Humanos , Integrasas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Vero
10.
Front Neurosci ; 15: 709684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354569

RESUMEN

Neurogenesis is a complex process that depends on the delicate regulation of spatial and temporal gene expression. In our previous study, we found that transcribed ultra-conserved regions (T-UCRs), a class of long non-coding RNAs that contain UCRs, are expressed in the developing nervous systems of mice, rhesus monkeys, and humans. In this study, we first detected the full-length sequence of T-uc.189, revealing that it was mainly concentrated in the ventricular zone (VZ) and that its expression decreased as the brain matured. Moreover, we demonstrated that knockdown of T-uc.189 inhibited neurogenesis. In addition, we found that T-uc.189 positively regulated the expression of serine-arginine-rich splicing factor 3 (Srsf3). Taken together, our results are the first to demonstrate that T-uc.189 regulates the expression of Srsf3 to maintain normal neurogenesis during cortical development.

11.
Cereb Cortex ; 31(9): 4078-4091, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33822906

RESUMEN

Wnt/ß-catenin signaling plays multiple important roles during mammalian brain development, and it regulates the proliferation and differentiation of neural progenitors in a context-dependent manner and affects neocortex layer formation. However, the specific role of Wnt/ß-catenin in neuronal layer fate determination in the neocortex is still unclear. Here, we report that Zbed3, which is a positive regulator of Wnt/ß-catenin signaling, colocalizes with ß-catenin at the endfeet of radial glia in the ventricular zone of embryo mouse neocortex. Overexpression and knockdown of Zbed3 increased and decreased the activity of Wnt/ß-catenin signaling in the neocortex, respectively. Interestingly, knockdown of Zbed3 in vivo could significantly shift neuronal fates from deep layers to upper layers but is not required for the proliferation and differentiation of neural progenitors. Overexpression of Zbed3 led to increased generation of deep-layer neurons without impairing cell cycle exit of neural progenitors. More importantly, knockdown of Zbed3 could effectively block the effects of the ectopic expression of stabilized ß-catenin on neocortex layer formation. Hence, our results demonstrate that Zbed3 is indispensable for Wnt/ß-catenin signaling regulating neuronal layer fates in the developing brain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Corteza Cerebral/crecimiento & desarrollo , Neocórtex/crecimiento & desarrollo , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Desarrollo Embrionario , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Células-Madre Neurales , Neuroglía , Neuronas , Embarazo , Factores de Transcripción/biosíntesis
12.
Cell Death Dis ; 12(3): 277, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723244

RESUMEN

Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.


Asunto(s)
Acidosis/metabolismo , Neoplasias Encefálicas/metabolismo , Metabolismo Energético , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Purinas/metabolismo , Acidosis/genética , Acidosis/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Línea Celular Tumoral , Glioma/genética , Glioma/patología , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metabolómica , Células Madre Neoplásicas/patología , Microambiente Tumoral
13.
Cell Death Dis ; 11(10): 907, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097698

RESUMEN

The eukaryotic cell cycle involves a highly orchestrated series of events in which the cellular genome is replicated during a synthesis (S) phase and each of the two resulting copies are segregated properly during mitosis (M). Host cell factor-1 (HCF-1) is a transcriptional co-regulator that is essential for and has been implicated in basic cellular processes, such as transcriptional regulation and cell cycle progression. Although a series of HCF-1 transcriptional targets have been identified, few functional clues have been provided, especially for chromosome segregation. Our results showed that HCF-1 activated CDC42 expression by binding to the -881 to -575 region upstream of the CDC42 transcription start site, and the regulation of CDC42 expression by HCF-1 was correlated with cell cycle progression. The overexpression of a spontaneously cycling and constitutively active CDC42 mutant (CDC42F28L) rescued G1 phase delay and multinucleate defects in mitosis upon the loss of HCF-1. Therefore, these results establish that HCF-1 ensures proper cell cycle progression by regulating the expression of CDC42, which indicates a possible mechanism of cell cycle coordination and the regulation mode of typical Rho GTPases.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Ciclo Celular/fisiología , Segregación Cromosómica , Ciclina A/biosíntesis , Ciclina A/genética , Progresión de la Enfermedad , Puntos de Control de la Fase G1 del Ciclo Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Factor C1 de la Célula Huésped/genética , Humanos , Mitosis , Regiones Promotoras Genéticas , Proteína de Unión al GTP cdc42/biosíntesis , Proteína de Unión al GTP cdc42/genética
14.
Cancers (Basel) ; 12(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272554

RESUMEN

RNA-binding proteins (RBPs) play important roles in many cancer types. However, RBPs have not been thoroughly and systematically studied in gliomas. Global analysis of the functional impact of RBPs will provide a better understanding of gliomagenesis and new insights into glioma therapy. In this study, we integrated a list of the human RBPs from six sources-Gerstberger, SONAR, Gene Ontology project, Poly(A) binding protein, CARIC, and XRNAX-which covered 4127 proteins with RNA-binding activity. The RNA sequencing data were downloaded from The Cancer Genome Atlas (TCGA) (n = 699) and Chinese Glioma Genome Atlas (CGGA) (n = 325 + 693). We examined the differentially expressed genes (DEGs) using the R package DESeq2, and constructed a weighted gene co-expression network analysis (WGCNA) of RBPs. Furthermore, survival analysis was also performed based on the univariate and multivariate Cox proportional hazards regression models. In the WGCNA analysis, we identified a key module involved in the overall survival (OS) of glioblastomas. Survival analysis revealed eight RBPs (PTRF, FNDC3B, SLC25A43, ZC3H12A, LRRFIP1, HSP90B1, HSPA5, and BNC2) are significantly associated with the survival of glioblastoma patients. Another 693 patients within the CGGA database were used to validate the findings. Additionally, 3564 RBPs were classified into canonical and non-canonical RBPs depending on the domains that they contain, and non-canonical RBPs account for the majority (72.95%). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that some non-canonical RBPs may have functions in glioma. Finally, we found that the knockdown of non-canonical RBPs, PTRF, or FNDC3B can alone significantly inhibit the proliferation of LN229 and U251 cells. Simultaneously, RNA Immunoprecipitation (RIP) analysis indicated that PTRF may regulate cell growth and death- related pathways to maintain tumor cell growth. In conclusion, our findings presented an integrated view to assess the potential death risks of glioblastoma at a molecular level, based on the expression of RBPs. More importantly, we identified non-canonical RNA-binding proteins PTRF and FNDC3B, showing them to be potential prognostic biomarkers for glioblastoma.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32081419

RESUMEN

Extracellular vesicles (EV), as the intercellular information transfer molecules which can regulate the tumor microenvironment, promote migration and tumor progression. Previous studies reported that EV from endothelial cells was used to guide the fate and survival of gliomas, but many researches focus on normal human endothelial cells (NhEC) rather than tumor-derived endothelial cells. Our laboratory isolated human endothelial cells from glioma issue (GhEC). We have previously demonstrated that EV from GhEC and NhEC, which both can promote glioma stem cells (GSC) proliferation and tumorsphere formation in vitro and tumourigenicity in vivo by the transfer of CD9. However, NhEC-EV or GhEC-EV could suppress glioma cells (GC) proliferation in vitro. It demonstrates the undifferentiated impact of EV. Here, we first compared GhEC-EV proteins with NhEC-EV (Screening criteria: GhEC-EV/NhEC-EV, FC > 1.5), and obtained 70 differential expression proteins, most of which were associated with invasion and migration. We found that GhEC or GhEC-EV preferred promoting GC migration than treating with NhEC or NhEC-EV. In terms of mechanism, we further revealed that EV-mediated transfer of MYO1C induced glioma cell LN229 migration. Knockdown of MYO1C in GhEC or GhEC-EV suppressed this effect. Overexpression of MYO1C promoted migration on the contrary. MYO1C was also detected in glioma cerebrospinal fluid (CSF), which is more suitable as a liquid biopsy biomarker and contributes to early diagnosis and monitoring in glioma. Our findings provide a new protein-MYO1C in EV to target tumor blood vessels, and bring a new point-cut to the treatment of gliomablastoma (GBM).

17.
Oncogene ; 38(43): 6898-6912, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31399645

RESUMEN

The perivascular niche in glioma is critical for the maintenance of glioma stem cells (GSCs), and tumour-endothelial cell (EC) communication impacts tumourigenesis in ways that are incompletely understood. Here, we show that glioma-associated human endothelial cells (GhECs), a main component of the perivascular niche, release extracellular vesicles (EVs) that increase GSC proliferation and tumour-sphere formation. GSCs treated with GhEC-EVs create a significantly greater tumour burden than do untreated GSCs in orthotopic xenografts. Mechanistic, analysis of EVs content identified CD9 as a mediator of the effects on GSCs. CD9 can activate the BMX/STAT3 signalling pathway in GSCs. Our results illuminate the tumour-supporting role of ECs by identifying that EC-derived EVs transfer of CD9 during intercellular communication, thereby enhancing the aggressiveness of glioblastoma by specifically maintaining GSCs.

18.
Cell Rep ; 28(3): 698-711.e5, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315048

RESUMEN

Histone methylation is essential for regulating gene expression during organogenesis to maintain stem cells and execute a proper differentiation program for their descendants. Here we show that the COMPASS family histone methyltransferase co-factor ASH2L is required for maintaining neural progenitor cells (NPCs) and the production and positioning of projection neurons during neocortex development. Specifically, loss of Ash2l in NPCs results in malformation of the neocortex; the mutant neocortex has fewer neurons, which are also abnormal in composition and laminar position. Moreover, ASH2L loss impairs trimethylation of H3K4 and the transcriptional machinery specific for Wnt-ß-catenin signaling, inhibiting the proliferation ability of NPCs at late stages of neurogenesis by disrupting S phase entry to inhibit cell cycle progression. Overexpressing ß-catenin after ASH2L elimination rescues the proliferation deficiency. Therefore, our findings demonstrate that ASH2L is crucial for modulating Wnt signaling to maintain NPCs and generate a full complement of neurons during mammalian neocortex development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neocórtex/citología , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética , Animales , Proliferación Celular/genética , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ontología de Genes , Histonas/química , Histonas/metabolismo , Metilación , Ratones , Neocórtex/embriología , Neurogénesis/fisiología , Neuronas/citología , RNA-Seq , Puntos de Control de la Fase S del Ciclo Celular/genética , Telencéfalo/citología , Telencéfalo/embriología , Telencéfalo/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , Regulación hacia Arriba , beta Catenina/metabolismo
19.
Mol Ther ; 27(9): 1621-1637, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31253583

RESUMEN

Glioma, the most common primary malignancy in the brain, has high recurrence and lethality rates, and thus, elucidation of the molecular mechanisms of this incurable disease is urgently needed. Poly-pyrimidine tract binding protein (PTBP1, also known as hnRNP I), an RNA-binding protein, has various mechanisms to promote gliomagenesis. However, the mechanisms regulating PTBP1 expression are unclear. Herein, we report a novel natural antisense noncoding RNA, PTB-AS, whose expression correlated positively with PTBP1 mRNA. We found that PTB-AS significantly promoted the proliferation and migration in vivo and in vitro of glioma cells. PTB-AS substantially increased the PTBP1 level by directly binding to its 3' UTR and stabilizing the mRNA. Furthermore, staphylococcal nuclease domain-containing 1 (SND1) dramatically increased the binding capacity between PTB-AS and PTBP1 mRNA. Mechanistically, PTB-AS could mask the binding site of miR-9 in the PTBP1-3' UTR; miR-9 negatively regulates PTBP1. To summarize, we revealed that PTB-AS, which maintains the PTBP1 level through extended base pairing to the PTBP1 3' UTR with the assistance of SND1, could significantly promote gliomagenesis.


Asunto(s)
Endonucleasas/metabolismo , Glioma/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Estabilidad del ARN , ARN sin Sentido/genética , ARN Mensajero/genética , Regiones no Traducidas 3' , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Interferencia de ARN , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo
20.
Dev Cell ; 49(5): 764-785.e4, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31080058

RESUMEN

The precisely timed generation of different neuronal types is a hallmark of development from invertebrates to vertebrates. In the developing mammalian neocortex, neural stem cells change competence over time to sequentially produce six layers of functionally distinct neurons. Here, we report that microRNAs (miRNAs) are dispensable for stem-cell self-renewal and neuron production but essential for timing neocortical layer formation and specifying laminar fates. Specifically, as neurogenesis progresses, stem cells reduce miR-128 expression and miR-9 activity but steadily increase let-7 expression, whereas neurons initially maintain the differences in miRNA expression present at birth. Moreover, miR-128, miR-9, and let-7 are functionally distinct; capable of specifying neurons for layer VI and layer V and layers IV, III, and II, respectively; and transiently altering their relative levels of expression can modulate stem-cell competence in a neurogenic-stage-specific manner to shift neuron production between earlier-born and later-born fates, partly by temporally regulating a neurogenesis program involving Hmga2.


Asunto(s)
Diferenciación Celular , MicroARNs/genética , Neocórtex/crecimiento & desarrollo , Células-Madre Neurales/citología , Neurogénesis , Animales , Proliferación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA