Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Adv ; 9(17): eabm4945, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126548

RESUMEN

Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.


Asunto(s)
Mutación de Línea Germinal , Hematopoyesis , Humanos , Persona de Mediana Edad , Mutación , Mutación Missense , Fenotipo
2.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
3.
PLoS Genet ; 18(11): e1010464, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383614

RESUMEN

The identification and understanding of gene-environment interactions can provide insights into the pathways and mechanisms underlying complex diseases. However, testing for gene-environment interaction remains a challenge since a.) statistical power is often limited and b.) modeling of environmental effects is nontrivial and such model misspecifications can lead to false positive interaction findings. To address the lack of statistical power, recent methods aim to identify interactions on an aggregated level using, for example, polygenic risk scores. While this strategy can increase the power to detect interactions, identifying contributing genes and pathways is difficult based on these relatively global results. Here, we propose RITSS (Robust Interaction Testing using Sample Splitting), a gene-environment interaction testing framework for quantitative traits that is based on sample splitting and robust test statistics. RITSS can incorporate sets of genetic variants and/or multiple environmental factors. Based on the user's choice of statistical/machine learning approaches, a screening step selects and combines potential interactions into scores with improved interpretability. In the testing step, the application of robust statistics minimizes the susceptibility to main effect misspecifications. Using extensive simulation studies, we demonstrate that RITSS controls the type 1 error rate in a wide range of scenarios, and we show how the screening strategy influences statistical power. In an application to lung function phenotypes and human height in the UK Biobank, RITSS identified highly significant interactions based on subcomponents of genetic risk scores. While the contributing single variant interaction signals are weak, our results indicate interaction patterns that result in strong aggregated effects, providing potential insights into underlying gene-environment interaction mechanisms.


Asunto(s)
Modelos Genéticos , Polimorfismo de Nucleótido Simple , Humanos , Sitios Genéticos , Interacción Gen-Ambiente , Fenotipo , Simulación por Computador , Estudio de Asociación del Genoma Completo
4.
Genome Res ; 32(10): 1918-1929, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220609

RESUMEN

Extensive evidence indicates that the pathobiological processes of a complex disease are associated with perturbation in specific neighborhoods of the human protein-protein interaction (PPI) network (also known as the interactome), often referred to as the disease module. Many computational methods have been developed to integrate the interactome and omics profiles to extract context-dependent disease modules. Yet, existing methods all have fundamental limitations in terms of rigor and/or efficiency. Here, we developed a statistical physics approach based on the random-field Ising model (RFIM) for disease module detection, which is both mathematically rigorous and computationally efficient. We applied our RFIM approach to genome-wide association studies (GWAS) of ten complex diseases to examine its performance for disease module detection. We found that our RFIM approach outperforms existing methods in terms of computational efficiency, connectivity of disease modules, and robustness to the interactome incompleteness.


Asunto(s)
Estudio de Asociación del Genoma Completo , Mapas de Interacción de Proteínas , Humanos , Estudio de Asociación del Genoma Completo/métodos , Física , Algoritmos
5.
Respir Med ; 202: 106970, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36058164

RESUMEN

BACKGROUND: The aim of this study was to assess the long-term clinical impact of the application of e-health as part of a virtual model of care in patients with Cystic Fibrosis (CF). METHODS: Digital care group (DCG) were deemed suitable for using the NuvoAir Home platform to monitor their disease at home as part of a virtual model of care project. The usual care group (UCG) remained on usual care. NuvoAir Home platform consists of a smartphone application, Bluetooth spirometer and a clinician portal. Data on pulmonary function, Cystic Fibrosis Questionnaire-Revised (CFQR) and pulmonary exacerbations were collected at baseline and after twelve months. A survey for the digital care group was emailed to evaluate their experience using the technology. RESULTS: Between February 2020 and May 2020 a cohort of 43 CF patients were recruited for the DCG (26 females; mean age 31.6 ± 6.8; 16 homozygous for delta F508; FEV1 48.4 ± 16.3% predicted) and 36 CF patients for UCG (18 females; mean age 29.1 ± 9.4; 6 homozygous for delta F508; FEV1 77.0 ± 25.0% predicted). CFQ-R score improved significantly through 12 months in the DCG with a mean change of 13.8 points, p < 0.0001, and no changes for the UCG (p = 0.73). When we analyzed the subgroup of CF patients on digital and usual care who did not receive CFTR modulator therapy, we found a change in CFQ-R score which was significantly associated with the use of digital technology while adjusting for baseline differences (p = 0.020). There was no significant difference in the change in lung function and number of exacerbations. 90% of patients reported they understood their CF better using the NuvoAir Home platform. No changes in medical treatment were reported during that time. CONCLUSIONS: The application of digital technologies in the management of adults with CF showed an improvement in patients' quality of life. Using a virtual model of care was well accepted by CF patients and improved their understanding of their medical condition.


Asunto(s)
Fibrosis Quística , Adulto , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Femenino , Humanos , Masculino , Calidad de Vida , Pruebas de Función Respiratoria , Encuestas y Cuestionarios , Adulto Joven
6.
Chronic Obstr Pulm Dis ; 9(3): 349-365, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35649102

RESUMEN

Background: The heterogeneous nature of chronic obstructive pulmonary disease (COPD) complicates the identification of the predictors of disease progression. We aimed to improve the prediction of disease progression in COPD by using machine learning and incorporating a rich dataset of phenotypic features. Methods: We included 4496 smokers with available data from their enrollment and 5-year follow-up visits in the COPD Genetic Epidemiology (COPDGene®) study. We constructed linear regression (LR) and supervised random forest models to predict 5-year progression in forced expiratory in 1 second (FEV1) from 46 baseline features. Using cross-validation, we randomly partitioned participants into training and testing samples. We also validated the results in the COPDGene 10-year follow-up visit. Results: Predicting the change in FEV1 over time is more challenging than simply predicting the future absolute FEV1 level. For random forest, R-squared was 0.15 and the area under the receiver operator characteristic (ROC) curves for the prediction of participants in the top quartile of observed progression was 0.71 (testing) and respectively, 0.10 and 0.70 (validation). Random forest provided slightly better performance than LR. The accuracy was best for Global initiative for chronic Obstructive Lung Disease (GOLD) grades 1-2 participants, and it was harder to achieve accurate prediction in advanced stages of the disease. Predictive variables differed in their relative importance as well as for the predictions by GOLD. Conclusion: Random forest, along with deep phenotyping, predicts FEV1 progression with reasonable accuracy. There is significant room for improvement in future models. This prediction model facilitates the identification of smokers at increased risk for rapid disease progression. Such findings may be useful in the selection of patient populations for targeted clinical trials.

7.
Hum Mol Genet ; 31(22): 3873-3885, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35766891

RESUMEN

RATIONALE: Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for the nonuniform distribution of genetic effects across the allele frequency and linkage disequilibrium (LD) spectrum. In addition, the contribution of rare variants has been unclear. OBJECTIVES: We sought to assess the heritability of COPD and lung function using whole-genome sequence data from the Trans-Omics for Precision Medicine program. METHODS: Using the genome-based restricted maximum likelihood method, we partitioned the genome into bins based on minor allele frequency and LD scores and estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. MEASUREMENTS AND MAIN RESULTS: In European ancestry participants, the estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio were 35.5%, 55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but lower sample size precluded calculation of rare variant heritability. CONCLUSIONS: Our study provides updated and unbiased estimates of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse ancestry will improve accuracy of these estimates.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Polimorfismo de Nucleótido Simple/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Estudio de Asociación del Genoma Completo , Fenotipo
8.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385699

RESUMEN

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Pulmón , National Heart, Lung, and Blood Institute (U.S.) , Enfermedad Pulmonar Obstructiva Crónica/genética , Factores de Riesgo , Estados Unidos/epidemiología
9.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115336

RESUMEN

BACKGROUND: Interstitial lung abnormalities (ILA) share many features with idiopathic pulmonary fibrosis; however, it is not known if ILA are associated with decreased mean telomere length (MTL). METHODS: Telomere length was measured with quantitative PCR in the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) and Age Gene/Environment Susceptibility Reykjavik (AGES-Reykjavik) cohorts and Southern blot analysis was used in the Framingham Heart Study (FHS). Logistic and linear regression were used to assess the association between ILA and MTL; Cox proportional hazards models were used to assess the association between MTL and mortality. RESULTS: In all three cohorts, ILA were associated with decreased MTL. In the COPDGene and AGES-Reykjavik cohorts, after adjustment there was greater than twofold increase in the odds of ILA when comparing the shortest quartile of telomere length to the longest quartile (OR 2.2, 95% CI 1.5-3.4, p=0.0001, and OR 2.6, 95% CI 1.4-4.9, p=0.003, respectively). In the FHS, those with ILA had shorter telomeres than those without ILA (-767 bp, 95% CI 76-1584 bp, p=0.03). Although decreased MTL was associated with chronic obstructive pulmonary disease (OR 1.3, 95% CI 1.1-1.6, p=0.01) in COPDGene, the effect estimate was less than that noted with ILA. There was no consistent association between MTL and risk of death when comparing the shortest quartile of telomere length in COPDGene and AGES-Reykjavik (HR 0.82, 95% CI 0.4-1.7, p=0.6, and HR 1.2, 95% CI 0.6-2.2, p=0.5, respectively). CONCLUSION: ILA are associated with decreased MTL.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón , Enfermedades Pulmonares Intersticiales/epidemiología , Enfermedades Pulmonares Intersticiales/genética , Telómero/genética , Tomografía Computarizada por Rayos X
10.
Eur Respir J ; 60(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35115341

RESUMEN

BACKGROUND: Genetic susceptibility may be associated with earlier onset of chronic obstructive pulmonary disease (COPD). We hypothesised that a polygenic risk score (PRS) for COPD would be associated with earlier age of diagnosis of COPD. METHODS: In 6647 non-Hispanic White (NHW) and 2464 African American (AA) participants from COPDGene, and 6812 participants from the Framingham Heart Study (FHS), we tested the relationship of the PRS and age of COPD diagnosis. Age at diagnosis was determined by: 1) self-reported age at COPD diagnosis or 2) age at visits when moderate-to-severe airflow limitation (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 2-4) was observed on spirometry. We used Cox regression to examine the overall and time-dependent effects of the PRS on incident COPD. In the COPDGene study, we also examined the PRS's predictive value for COPD at age <50 years (COPD50) using logistic regression and area under the curve (AUC) analyses, with and without the addition of other risk factors present at early life (e.g. childhood asthma). RESULTS: In Cox models, the PRS demonstrated age-dependent associations with incident COPD, with larger effects at younger ages in both cohorts. The PRS was associated with COPD50 (OR 1.55 (95% CI 1.41-1.71) for NHW, OR 1.23 (95% CI 1.05-1.43) for AA and OR 2.47 (95% CI 2.12-2.88) for FHS participants). In COPDGene, adding the PRS to known early-life risk factors improved prediction of COPD50 in NHW (AUC 0.69 versus 0.74; p<0.0001) and AA (AUC 0.61 versus 0.64; p=0.04) participants. CONCLUSIONS: A COPD PRS is associated with earlier age of diagnosis of COPD and retains predictive value when added to known early-life risk factors.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Niño , Predisposición Genética a la Enfermedad , Humanos , Pulmón , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Factores de Riesgo , Espirometría
11.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34996830

RESUMEN

INTRODUCTION: Loss-of-function variants in both copies of the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF); however, there is evidence that reduction in CFTR function due to the presence of one deleterious variant can have clinical consequences. Here, we hypothesise that CFTR variants in individuals with a history of smoking are associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. METHODS: Whole-genome sequencing was performed through the National Heart, Lung, and Blood Institute TOPMed (TransOmics in Precision Medicine) programme in 8597 subjects from the COPDGene (Genetic Epidemiology of COPD) study, an observational study of current and former smokers. We extracted clinically annotated CFTR variants and performed single-variant and variant-set testing for COPD and related phenotypes. Replication was performed in 2118 subjects from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study. RESULTS: We identified 301 coding variants within the CFTR gene boundary: 147 of these have been reported in individuals with CF, including 36 CF-causing variants. We found that CF-causing variants were associated with chronic bronchitis in variant-set testing in COPDGene (one-sided p=0.0025; OR 1.53) and in meta-analysis of COPDGene and ECLIPSE (one-sided p=0.0060; OR 1.52). Single-variant testing revealed that the F508del variant was associated with chronic bronchitis in COPDGene (one-sided p=0.015; OR 1.47). In addition, we identified 32 subjects with two or more CFTR variants on separate alleles and these subjects were enriched for COPD cases (p=0.010). CONCLUSIONS: Cigarette smokers who carry one deleterious CFTR variant have higher rates of chronic bronchitis, while presence of two CFTR variants may be associated with COPD. These results indicate that genetically mediated reduction in CFTR function contributes to COPD related phenotypes, in particular chronic bronchitis.


Asunto(s)
Bronquitis Crónica , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Bronquitis Crónica/complicaciones , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Estudios Observacionales como Asunto , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Fumadores
12.
Blood ; 139(3): 357-368, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34855941

RESUMEN

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Asunto(s)
Hematopoyesis Clonal , Enfermedad Pulmonar Obstructiva Crónica/genética , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Oportunidad Relativa , Enfermedad Pulmonar Obstructiva Crónica/etiología , Factores de Riesgo , Fumar/efectos adversos , Secuenciación del Exoma
13.
JAMA Netw Open ; 4(12): e2139525, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913977

RESUMEN

Importance: The risk of airflow limitation and chronic obstructive pulmonary disease (COPD) is influenced by combinations of cigarette smoking and genetic susceptibility, yet it remains unclear whether gene-by-smoking interactions are associated with quantitative measures of lung function. Objective: To assess the interaction of cigarette smoking and polygenic risk score in association with reduced lung function. Design, Setting, and Participants: This UK Biobank cohort study included UK citizens of European ancestry aged 40 to 69 years with genetic and spirometry data passing quality control metrics. Data was analyzed from July 2020 to March 2021. Exposures: PRS of combined forced expiratory volume in 1 second (FEV1) and percent of forced vital capacity exhaled in the first second (FEV1/FVC), self-reported pack-years of smoking, ever- vs never-smoking status, and current- vs former- or never-smoking status. Main Outcomes and Measures: FEV1/FVC was the primary outcome. Models were used to test for interactions with models, including the main effects of PRS, different smoking variables, and their cross-product terms. The association between pack-years of smoking and FEV1/FVC were compared for those in the highest vs lowest decile of estimated genetic risk for low lung function. Results: We included 319 730 individuals, of whom 24 915 (8%) had moderate-to-severe COPD cases, and 44.4% were men. Participants had a mean (SD) age 56.5 of (8.02) years. The PRS and pack-years were significantly associated with lower FEV1/FVC (PRS: ß, -0.03; 95% CI, -0.031 to -0.03; pack-years: ß, -0.0064; 95% CI, -0.0064 to -0.0063) and the interaction term (ß, -0.0028; 95% CI, -0.0029 to -0.0026). A stepwise increment in estimated effect sizes for these interaction terms was observed per 10 pack-years of smoking exposure. The interaction of PRS with 11 to 20, 31 to 40, and more than 50 pack-years categories were ß (interaction) -0.0038 (95% CI, -0.0046 to -0.0031); -0.013 (95% CI, -0.014 to -0.012); and -0.017 (95% CI, -0.019 to -0.016), respectively. There was evidence of significant interaction between PRS with ever- or never- smoking status (ß, interaction; -0.0064; 95% CI, -0.0068 to -0.0060) and current or not-current smoking (ß, interaction; -0.0091; 95% CI, -0.0097 to -0.0084). For any given level of pack-years of smoking exposure, FEV1/FVC was significantly lower for individuals in the tenth decile (ie, highest risk) than the first decile (ie, lowest risk) of genetic risk. For every 20 pack-years of smoking, those in the tenth decile compared with the first decile of genetic risk showed nearly a 2-fold reduction in FEV1/FVC. Conclusions and Relevance: COPD is characterized by diminished lung function, and our analyses suggest there is substantial interaction between genome-wide PRS and smoking exposures. While smoking was associated with decreased lung function across all genetic risk categories, the associations were strongest in individuals with higher estimated genetic risk.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Predisposición Genética a la Enfermedad , Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Adulto , Anciano , Reglas de Decisión Clínica , Estudios Transversales , Femenino , Volumen Espiratorio Forzado , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Medición de Riesgo , Factores de Riesgo , Espirometría , Capacidad Vital
14.
J Allergy Clin Immunol ; 148(6): 1589-1595, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536413

RESUMEN

BACKGROUND: Total serum IgE (tIgE) is an important intermediate phenotype of allergic disease. Whole genome genetic association studies across ancestries may identify important determinants of IgE. OBJECTIVE: We aimed to increase understanding of genetic variants affecting tIgE production across the ancestry and allergic disease spectrum by leveraging data from the National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine program; the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA); and the Atopic Dermatitis Research Network (N = 21,901). METHODS: We performed genome-wide association within strata of study, disease, and ancestry groups, and we combined results via a meta-regression approach that models heterogeneity attributable to ancestry. We also tested for association between HLA alleles called from whole genome sequence data and tIgE, assessing replication of associations in HLA alleles called from genotype array data. RESULTS: We identified 6 loci at genome-wide significance (P < 5 × 10-9), including 4 loci previously reported as genome-wide significant for tIgE, as well as new regions in chr11q13.5 and chr15q22.2, which were also identified in prior genome-wide association studies of atopic dermatitis and asthma. In the HLA allele association study, HLA-A∗02:01 was associated with decreased tIgE level (Pdiscovery = 2 × 10-4; Preplication = 5 × 10-4; Pdiscovery+replication = 4 × 10-7), and HLA-DQB1∗03:02 was strongly associated with decreased tIgE level in Hispanic/Latino ancestry populations (PHispanic/Latino discovery+replication = 8 × 10-8). CONCLUSION: We performed the largest genome-wide association study and HLA association study of tIgE focused on ancestrally diverse populations and found several known tIgE and allergic disease loci that are relevant in non-European ancestry populations.


Asunto(s)
Asma/genética , Dermatitis Atópica/genética , Etnicidad , Genotipo , Antígeno HLA-A2/genética , Cadenas beta de HLA-DQ/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inmunoglobulina E/sangre , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Secuenciación Completa del Genoma , Adulto Joven
15.
Hepatol Commun ; 5(8): 1348-1361, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34430780

RESUMEN

The serpin family A member 1 (SERPINA1) Z allele is present in approximately one in 25 individuals of European ancestry. Z allele homozygosity (Pi*ZZ) is the most common cause of alpha 1-antitrypsin deficiency and is a proven risk factor for cirrhosis. We examined whether heterozygous Z allele (Pi*Z) carriers in United Kingdom (UK) Biobank, a population-based cohort, are at increased risk of liver disease. We replicated findings in Massachusetts General Brigham Biobank, a hospital-based cohort. We also examined variants associated with liver disease and assessed for gene-gene and gene-environment interactions. In UK Biobank, we identified 1,493 cases of cirrhosis, 12,603 Z allele heterozygotes, and 129 Z allele homozygotes among 312,671 unrelated white British participants. Heterozygous carriage of the Z allele was associated with cirrhosis compared to noncarriage (odds ratio [OR], 1.53; P = 1.1×10-04); homozygosity of the Z allele also increased the risk of cirrhosis (OR, 11.8; P = 1.8 × 10-09). The OR for cirrhosis of the Z allele was comparable to that of well-established genetic variants, including patatin-like phospholipase domain containing 3 (PNPLA3) I148M (OR, 1.48; P = 1.1 × 10-22) and transmembrane 6 superfamily member 2 (TM6SF2) E167K (OR, 1.34; P = 2.6 × 10-06). In heterozygotes compared to noncarriers, the Z allele was associated with higher alanine aminotransferase (ALT; P = = 4.6 × 10-46), aspartate aminotransferase (AST; P = 2.2 × 10-27), alkaline phosphatase (P = 3.3 × 10-43), gamma-glutamyltransferase (P = 1.2 × 10-05), and total bilirubin (P = 6.4 × 10-06); Z allele homozygotes had even greater elevations in liver biochemistries. Body mass index (BMI) amplified the association of the Z allele for ALT (P interaction = 0.021) and AST (P interaction = 0.0040), suggesting a gene-environment interaction. Finally, we demonstrated genetic interactions between variants in PNPLA3, TM6SF2, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13); there was no evidence of epistasis between the Z allele and these variants. Conclusion: SERPINA1 Z allele heterozygosity is an important risk factor for liver disease; this risk is amplified by increasing BMI.

16.
EBioMedicine ; 69: 103463, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34224973

RESUMEN

BACKGROUND: Family with Sequence Similarity 13, Member A (FAM13A) gene has been consistently associated with COPD by Genome-wide association studies (GWAS). Our previous study demonstrated that FAM13A was mainly expressed in the lung epithelial progenitors including Club cells and alveolar type II epithelial (ATII) cells. Fam13a-/- mice were resistant to cigarette smoke (CS)-induced emphysema through promoting ß-catenin/Wnt activation. Given the important roles of ß-catenin/Wnt activation in alveolar regeneration during injury, it is unclear when and where FAM13A regulates the Wnt pathway, the requisite pathway for alveolar epithelial repair, in vivo during CS exposure in lung epithelial progenitors. METHODS: Fam13a+/+ or Fam13a-/- mice were crossed with TCF/Lef:H2B-GFP Wnt-signaling reporter mouse line to indicate ß-catenin/Wnt-activated cells labeled with GFP followed by acute (1 month) or chronic (7 months) CS exposure. Fluorescence-activated flow cytometry analysis, immunofluorescence and organoid culture system were performed to identify the ß-catenin/Wnt-activated cells in Fam13a+/+ or Fam13a-/- mice exposed to CS. Fam13a;SftpcCreERT2;Rosa26RmTmG mouse line, where GFP labels ATII cells, was generated for alveolar organoid culture followed by analyses of organoid number, immunofluorescence and gene expression. Single cell RNA-seq data from COPD ever smokers and nonsmoker control lungs were further analyzed. FINDINGS: We found that FAM13A-deficiency significantly increased Wnt activation mainly in lung epithelial cells. Consistently, after long-term CS exposure in vivo, FAM13A deficiency bestows alveolar epithelial progenitor cells with enhanced proliferation and differentiation in the ex vivo organoid model. Importantly, expression of FAM13A is significantly increased in human COPD-derived ATII cells compared to healthy ATII cells as suggested by single cell RNA-sequencing data. INTERPRETATION: Our findings suggest that FAM13A-deficiency promotes the Wnt pathway-mediated ATII cell repair/regeneration, and thereby possibly mitigating CS-induced alveolar destruction. FUND: This project is funded by the National Institutes of Health of United States of America (NIH) grants R01HL127200, R01HL137927, R01HL148667 and R01HL147148 (XZ).


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Autorrenovación de las Células , Proteínas Activadoras de GTPasa/metabolismo , Enfisema Pulmonar/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt , Células Epiteliales Alveolares/citología , Animales , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfisema Pulmonar/etiología , Células Madre/citología , Células Madre/fisiología , Contaminación por Humo de Tabaco/efectos adversos
17.
Am J Respir Cell Mol Biol ; 65(5): 532-543, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34166600

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a common, complex disease and a major cause of morbidity and mortality. Although multiple genetic determinants of COPD have been implicated by genome-wide association studies (GWASs), the pathophysiological significance of these associations remains largely unknown. From a COPD protein-protein interaction network module, we selected a network path between two COPD GWAS genes for validation studies: FAM13A (family with sequence similarity 13 member A)-AP3D1-CTGF- TGFß2. We find that TGFß2, FAM13A, and AP3D1 (but not CTGF) form a cellular protein complex. Functional characterization suggests that this complex mediates the secretion of TGFß2 through an AP-3 (adaptor protein 3)-dependent pathway, with FAM13A acting as a negative regulator by targeting a late stage of this transport that involves the dissociation of coat-cargo interaction. Moreover, we find that TGFß2 is a transmembrane protein that engages the AP-3 complex for delivery to the late endosomal compartments for subsequent secretion through exosomes. These results identify a pathophysiological context that unifies the biological network role of two COPD GWAS proteins and reveal novel mechanisms of cargo transport through an intracellular pathway.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades delta de Complexo de Proteína Adaptadora/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Complejo 3 de Proteína Adaptadora/genética , Subunidades delta de Complexo de Proteína Adaptadora/genética , Línea Celular , Exosomas/metabolismo , Proteínas Activadoras de GTPasa/genética , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Mapas de Interacción de Proteínas/genética , Transporte de Proteínas , Reproducibilidad de los Resultados , Factor de Crecimiento Transformador beta2/genética
18.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34159627

RESUMEN

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Brasil , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Filogenia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
19.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33720349

RESUMEN

Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ2 test and the exact test) have long been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect genotype calls often can be identified as deviations from HWE. However, in data sets composed of individuals from diverse ancestries, HWE can be violated even without genotyping error, complicating the use of HWE testing to assess genotype data quality. In this manuscript, we present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for population structure and genotype uncertainty, and to evaluate the impact of population heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods using simulated and real sequence data sets. Our results demonstrate that ignoring population structure or genotype uncertainty in HWE tests can inflate false-positive rates by many orders of magnitude. Our evaluations demonstrate different tradeoffs between false positives and statistical power across the methods, with RUTH consistently among the best across all evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform HWE tests across millions of markers and hundreds of thousands of individuals while supporting standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth.


Asunto(s)
Frecuencia de los Genes/genética , Genética de Población/métodos , Desequilibrio de Ligamiento/genética , Alelos , Genotipo , Humanos , Modelos Genéticos , Modelos Estadísticos , Fenotipo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA