Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37960455

RESUMEN

"Three straight and two flat" is the inevitable demand when realizing the intelligent mining of a fully mechanized mining face. To address the crucial technical issue of lacking accurate perception of the shape of the scraper conveyor during intelligent coal mining, a three-dimensional curvature sensor involving fiber Bragg grating (FBG) is used as a perceptive tool to conduct curve reconstruction research based on different local motion frames and to reconstruct the shape of the scraper conveyor. Firstly, the formation process of the 'S'-shaped bending section of the scraper conveyor during the pushing process is determined. Based on the FBG sensing principle, a mathematical model between the variation in the central wavelength and the strain and curvature is established, and the cubic B-spline interpolation method is employed to continuously process the obtained discrete curvature. Secondly, based on differential geometry, a spatial curve reconstruction algorithm based on the Frenet moving frame is derived, and the shape curve prediction interpolation model is built based on a gated recurrent unit (GRU) model, which reduces the impact of the decrease in curve reconstruction accuracy caused by damage to some grating measuring points. Finally, an experimental platform was designed and built, and sensors with curvature radii of 6 m, 7 m, and 8 m were tested. The experimental results showed that the reconstructed curve was essentially consistent with the actual shape, and the absolute error at the end was about 2 mm. The feasibility of this reconstruction algorithm in engineering has been proven, and this is of great significance in achieving shape curve perception and straightness control for scraper conveyors.

2.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177493

RESUMEN

The operating attitude of a shearer based on a three-dimensional (3D) space scale is the necessary basic information for realizing intelligent mining. Aiming to address the problem of the insufficient perception accuracy of shearers, in this paper, the rotation model of the actual turning mechanism of the strapdown inertial navigation system (SINS) of shearers is established, and the error propagation characteristics of different single-axis rotation modulation schemes are revealed. Through theory and simulation, the optimal rotation modulation scheme is determined to be the improved four-position turn-stop modulation with a rotation of <360°. The experiment shows that the 24 h positioning error of this scheme is 3.7 nmile, and the heading angle changes by 0.06°, which proves that this scheme can effectively improve the attitude perception accuracy of the inertial navigation system (INS). The field application of the shearer operating attitude perception based on this scheme shows that the positioning error after error compensation is 17% of that before compensation, and the heading angle error is 75% of that before compensation, which verifies that this scheme can significantly improve the accuracy of shearer operating attitude perception in field applications. This scheme can achieve higher precision perception accuracy based on SINS and has broad application prospects in the field of high-precision pose perception of coal mining machines, roadheaders, and other equipment.

3.
J Phys Chem A ; 127(9): 2091-2103, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36811954

RESUMEN

The formation of molecular clusters and secondary aerosols in the atmosphere has a significant impact on the climate. Studies typically focus on the new particle formation (NPF) of sulfuric acid (SA) with a single base molecule (e.g., dimethylamine or ammonia). In this work, we examine the combinations and synergy of several bases. Specifically, we used computational quantum chemistry to perform configurational sampling (CS) of (SA)0-4(base)0-4 clusters with five different types of bases: ammonia (AM), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). Overall, we studied 316 different clusters. We used a traditional multilevel funnelling sampling approach augmented by a machine-learning (ML) step. The ML made the CS of these clusters possible by significantly enhancing the speed and quality of the search for the lowest free energy configurations. Subsequently, the cluster thermodynamics properties were evaluated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory. The calculated binding free energies were used to evaluate the cluster stabilities for population dynamics simulations. The resultant SA-driven NPF rates and synergies of the studied bases are presented to show that DMA and EDA act as nucleators (although EDA becomes weak in large clusters), TMA acts as a catalyzer, and AM/MA is often overshadowed by strong bases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...