RESUMEN
INTRODUCTION: Mirror people have difficulty with PICC placement due to inversion of organs. Intracavitary electrocardiography (IC-ECG) guided peripherally inserted central catheter (PICC) tip location technique has been widely applied in clinical practice. CASE DESCRIPTION: Herein, we admitted a 59-year-old man diagnosed with esophageal cancer (EC). Chest X-ray and computed tomography (CT) revealed that the patient was with a mirror-image dextrocardia and situs inversus totalis: the heart and stomach located in the right side of the body, whereas the liver located in the left side. Echocardiography suggested that the apex of the heart pointed toward the right, while the left and right chambers were inverted. The relationship of the heart chambers, structure, and function were normal: left ventricular ejection fraction was 0.67, left atrial diameter was 31 mm, and heart output was 4.7 L/min. Surface ECG showed typical features of a dextrocardia: P-wave inverted on lead I. Amplitude of the R-wave and S-wave decreased gradually on lead chest from V1 to V5. Compared with the normal ECG image, the waves completely exchanged on lead II and III, so as on aVR and aVL. METHODS: Column of saline technique can assist operator estimate the tip position in real-time according to P-wave changes. When the height of P-wave reaches to its highest, it means that the tip of catheter has advanced to the target position of cavo-atrial junction (CAJ). OUTCOMES: Patient was inserted catheter and no adverse events were reported. CONCLUSIONS: Measuring the predicted length of catheter is still an indispensible procedure to help precisely adjusting the tip position in IC-ECG guided PICC. Our work provides both supplement for clinical data to facilitate further research and better understanding of special types of PICC to clinicians.
RESUMEN
Postharvest decay, primarily caused by pathogenic fungi in ripening fruits and fresh vegetables, poses a challenge to agricultural sustainability and results in significant economic losses. The regulation of the fruit ripening by DNA methylation has been well demonstrated, while defense response of fruit underlying epigenetic regulation against postharvest decay remains uncertain. In the present study, treatment of tomato fruits with the DNA methyltransferase inhibitor 5-Azacytidine (5-Aza) notably decreased their susceptibility to gray mold. Following 5-Aza treatment, we observed a substantial increase in activities of chitinase (CHI) and glucanase (GLU) in tomato fruits, as well as an increase in the expression of the dicer-like SlDCL2 gene family. Suppression of SlDCL2c through double-stranded RNA-induced RNA interference (RNAi) resulted in a decrease in the expression of chitinases CHI3, CHI9, Class V chitinase, and endochitinase 4 by 71%, 29%, 55%, 64%, as well as glucanases Cel1, Cel2, and GluB by 19%, 93%, and 87%, respectively. This was accompanied by decreased activities of resistance-related enzymes, including CHI and GLU. The expression levels of genes phenylalanine ammonia-lyase PAL2, peroxidase POD 12, POD P7, CCR1, CYP84A2, and COMT in phenylpropanoid biosynthesis pathway also decreased by 33%, 53%, 18%, 50%, 30%, and 24% in SlDCL2c-RNAi fruit, resulting in decreased activities of PAL and POD. Consequently, the lesion diameter of gray mold in SlDCL2c-RNAi fruit increased by 55% compared to the control group. Overall, the present study indicated that DNA methyltransferase inhibitor 5-Aza reduces susceptibility of tomato fruit to gray mold through regulation of DCL2c-mediated inducible defense response.
RESUMEN
Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Masculino , Femenino , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Estaciones del Año , Monitoreo del Ambiente , Medición de Riesgo , China/epidemiología , Carbón Mineral/análisisRESUMEN
Glucagon-like peptide 1 (GLP-1) regulates food intake, insulin production, and metabolism. Our recent study demonstrated that pancreatic α-cells-secreted (intraislet) GLP-1 effectively promotes maternal insulin secretion and metabolic adaptation during pregnancy. However, the role of circulating GLP-1 in maternal energy metabolism remains largely unknown. Our study aims to investigate systemic GLP-1 response to pregnancy and its regulatory effect on fetal growth. Using C57BL/6 mice, we observed a gradual decline in maternal blood GLP-1 concentrations. Subsequent administration of the GLP-1 receptor agonist semaglutide (Sem) to dams in late pregnancy revealed a modest decrease in maternal food intake during initial treatment. At the same time, no significant alterations were observed in maternal body weight or fat mass. Notably, Sem-treated dams exhibited a significant decrease in fetal body weight, which persisted even following the restoration of maternal blood glucose levels. Despite no observable change in placental weight, a marked reduction in the placenta labyrinth area from Sem-treated dams was evident. Our investigation further demonstrated a substantial decrease in the expression levels of various pivotal nutrient transporters within the placenta, including glucose transporter one and sodium-neutral amino acid transporter one, after Sem treatment. In addition, Sem injection led to a notable reduction in the capillary area, number, and surface densities within the labyrinth. These findings underscore the crucial role of modulating circulating GLP-1 levels in maternal adaptation, emphasizing the inhibitory effects of excessive GLP-1 receptor activation on both placental development and fetal growth.NEW & NOTEWORTHY Our study reveals a progressive decline in maternal blood glucagon-like peptide 1 (GLP-1) concentration. GLP-1 receptor agonist injection in late pregnancy significantly reduced fetal body weight, even after restoration of maternal blood glucose concentration. GLP-1 receptor activation significantly reduced the placental labyrinth area, expression of some nutrient transporters, and capillary development. Our study indicates that reducing maternal blood GLP-1 levels is a physiological adaptation process that benefits placental development and fetal growth.
Asunto(s)
Glucemia , Placenta , Animales , Femenino , Ratones , Embarazo , Glucemia/metabolismo , Desarrollo Fetal , Peso Fetal , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Agonistas Receptor de Péptidos Similares al Glucagón , Ratones Endogámicos C57BL , Placenta/metabolismoRESUMEN
The compositional characteristics, concentration of nitroaromatic compounds(NACs) in PM2.5 in urban Shanghai, and their correlation with gaseous precursors were investigated. A total of 39 winter and 46 summer PM2.5 samples from 2020 to 2021 were collected using a high-flow sampler and analyzed via ultra-performance liquid chromatography coupled with ESI-Orbitrap high-resolution mass spectrometry(UPLC-Orbitrap-HRMS). Quantitative analysis was performed on 12 NACs compounds, combined with backward trajectory meteorological elements, molecular composition, and classification analysis of CHON substances. The results showed that a total of 12 NACs had an average concentration in winter of 17.1 ng·m-3, which was three times higher than that in summer(5.7 ng·m-3), mainly due to air masses in winter coming primarily from the northern part of China with more biomass burning, whereas more air masses in summer came from the cleaner southeastern ocean. 4-Nitrophenol was the most abundant species of NACs in winter, whereas 4-nitrophenol(clean days) and 4-hydroxy-3-nitrobenzoic acid(polluted days) were the most abundant species in summer. Qualitative analysis based on features such as aromatic ring equivalence number(Xc), O/C, and H/C values for the identification and characterization of monocyclic and polycyclic aromatic compounds showed that CHON compounds were mainly aromatic compounds in winter and summer in urban Shanghai. The number and abundance of CHON compounds detected on PM2.5 polluted days were 2 and 1.5 times higher(winter) and 2.5 and 2 times higher(summer) than that on clean days, respectively. Comparing the analysis results of clean and polluted days in winter and summer, it was found that 80% of the CHON compounds with a relative abundance in the top 10 had O/N ≥ 3 and RDBE values between 5 and 8. The results suggest that these highly abundant CHON analogs may have had mononitro- or dinitro-substituted benzene rings. Correlation analysis between gaseous precursors and NACs indicated that oxidative reactive formation of VOCs(benzene, toluene, etc.) from anthropogenic emissions was the main source of NACs in summer. By contrast, it was influenced by a combination of biomass combustion emissions and secondary formation of oxidative NOx from anthropogenic VOCs in winter.
RESUMEN
The characteristics and main factors of causes of haze in Zhoukou in January 2022 were analyzed. Six air pollutants, water-soluble ions, elements, OC, EC, and other parameters in fine particulate matter were monitored and analyzed using a set of online high-time-resolution instruments in an urban area. The results showed that the secondary inorganic aerosols(SNA), carbonaceous aerosols(CA, including organic carbon OC and inorganic carbon EC), and reconstructed crustal materials(CM, such as Al2O3, SiO2, CaO, and Fe2O3, etc.) were the three main components, accounting for 61.3%, 24.3%, and 9.72% in PM2.5, respectively. The concentrations of SNA, CA, CM, and SOA were increased, accompanied with higher AQI. The sulfur oxidation rate(SOR) and nitrogen oxidation rate(NOR) in January were 0.53 and 0.46, respectively. The growth rates[µg·(m3·h)] of sulfate and nitrate were 0.027(-5.89-9.47, range) and 0.051(-23.1-12.4), respectively. During the haze period, the growth rates of sulfate and nitrate were 0.13 µg·(m3·h)-1and 0.24 µg·(m3·h)-1, which were 4.8 and 4.7 times higher than the average value of January, respectively. Although the sulfur oxidation rate was greater than the nitrogen oxidation rate, the growth rate of nitrate was approximately 1.8 times that of sulfate owing to the difference in the concentration of gaseous precursors and the influence of relative humidity. The growth rates of nitrate in SNA were significantly higher than those of sulfate on heavily polluted days. The values of SOR, NOR, and concentrations of SNA and SOA during higher AQI and humidity periods were higher than those in lower AQI and humidity periods. The Ox(NO2+O3) decreased with the increase in relative humidity. The SOA was higher at nighttime, increasing faster with the humidity than that in daytime. Under the situation of lower temperature, higher humidity, and lower wind speed, the emission of gaseous precursors of SNA requires further attention in Zhoukou in winter. Advanced control strategies of emissions of SO2 and NO2, such as mobile sources and coal-burning sources, could reduce the peak of haze in winter efficiently.
RESUMEN
Aerosol nitrate (NO3-) constitutes a significant component of fine particles in China. Prioritizing the control of volatile organic compounds (VOCs) is a crucial step toward achieving clean air, yet its impact on NO3- pollution remains inadequately understood. Here, we examined the role of VOCs in NO3- formation by combining comprehensive field measurements conducted during the China International Import Expo (CIIE) in Shanghai (from 10 October to 22 November 2018) and multiphase chemical modeling. Despite a decline in primary pollutants during the CIIE, NO3- levels increased compared to pre-CIIE and post-CIIEâNO3- concentrations decreased in the daytime (by -10 and -26%) while increasing in the nighttime (by 8 and 30%). Analysis of the observations and backward trajectory indicates that the diurnal variation in NO3- was mainly attributed to local chemistry rather than meteorological conditions. Decreasing VOCs lowered the daytime NO3- production by reducing the hydroxyl radical level, whereas the greater VOCs reduction at night than that in the daytime increased the nitrate radical level, thereby promoting the nocturnal NO3- production. These results reveal the double-edged role of VOCs in NO3- formation, underscoring the need for transferring large VOC-emitting enterprises from the daytime to the nighttime, which should be considered in formulating corresponding policies.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Nitratos/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , China , Contaminación Ambiental/análisis , Monitoreo del Ambiente , Ozono/análisisRESUMEN
Browning discoloration is a critical issue that negatively affects the quality of fresh-cut products and their industrial growth. Although many individual anti-browning technologies have been adopted, very few reports on the combination use of natural product extracts and physical methods exist. This study investigated the use of Flos Sophorae Immaturus extract in conjunction with thermal treatment and discovered that the combination effectively retarded browning in fresh-cut potatoes. Accordingly, the activities of polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase, as well as phenol accumulation, were effectively regulated. Meanwhile, this combination treatment also allowed for the modulation of nitric oxide synthase, superoxide dismutase, and catalase activities, while also regulating the concentrations of nitric oxide, superoxide anion, and hydrogen peroxide. Furthermore, the duplex treatment also regulated the antioxidant capacity and malondialdehyde concentrations. In addition, 39 phytoactive compounds, including protocatechuic acid, quercetin, (-)-alpha-pinene, and matrine, were identified in the extract, which may function as the anti-browning composition. These findings suggest that the combination technology modulated the dynamic equilibrium of production and clearance of nitric oxide and reactive oxygen species, thereby reducing browning deterioration. This is, to our knowledge, the first report of the combined application of Flos Sophorae Immaturus and thermal treatment, which may offer a novel option for fresh-cut preservation. PRACTICAL APPLICATION: The feasibility of integrating a novel highly efficient, safe, environmentally friendly, and easy-to-operate anti-browning alternative, with the ability to integrate into the existing processing line was investigated. The color of sliced potato chips was significantly improved (73.4%) by dipping them in a 0.01% Flos Sophorae Immaturus solution for 5 min and then in 55°C water for 2 min. In this regard, superior browning alleviation may depend on the regulation of the browning reaction and the NO-ROS network. This method has a promising future for making fresh-cut products more appealing to consumers and may provide guidance for fresh-cut producers and related industries.
Asunto(s)
Óxido Nítrico , Solanum tuberosum , Especies Reactivas de Oxígeno , Quercetina , Antioxidantes/farmacología , Extractos Vegetales/farmacologíaRESUMEN
Fresh walnuts have a high water content and are susceptible to decay, and controlling fungal contamination during storage is vital to walnut marketing. In this research, the dominant pathogenic fungus of fresh walnuts was first identified as Penicillium crustosum by morphological and molecular methods. The antifungal effect of herbal smoke fumigation was tested in vitro and in vivo, including Myristica fragrans Houtt., Aucklandia lappa Decne., Eugenia caryophyllata Thunb., Atractylodes lancea (Thunb.) DC., Shiraia bambusicola Henn., Artemisia argyi Lévl. et Vant. The results demonstrated that smoke from all six herbs successfully inhibited P. crustosum growth, and A. argyi smoke produced the best antifungal effect, which contained higher contents of phenol (17.1%), eugenol (13.7%), hexacosane, tetracontane, heneicosane, linolenic acid and other antimicrobial components by gas chromatography-mass spectrometry. Interestingly, optical transmittance data were found to correlate with antifungal capacity, revealing that a formed physical barrier combined with the above antimicrobial compositions, to participate in mold controlling together. Finally, fumigation with A. argyi smoke was tested in a real storage situation at proper dose, which not only dramatically controlled fungal contamination (>70%), but also maintained better odor and taste without oxidative rancidity or other adverse effects. This is the first report in which herbal smoke fumigation was adopted to preserve fresh walnut, providing a new way to reduce mold contamination and maintain quality of fresh walnuts in a natural and safe manner. More research on the application of herbal smoke fumigation to agricultural products in post-harvest storage is needed to explore the conditions and products for which it can be used successfully.
Asunto(s)
Antiinfecciosos , Juglans , Antifúngicos/farmacología , Fumigación , HumoRESUMEN
Organic aerosol (OA) is a key component of fine particulate matter (PM2.5) and affects the human health and leads to climate change. With strict control measures for air pollutants during the last decade, the OA concentration in China declined slowly, while its sources remain unclear. In this study, we simulate the primary OA (POA) and secondary OA (SOA) concentrations from 2005 to 2019 with a state-of-the-art air quality model, Community Multiscale Air Quality (CMAQ, version 5.3.2) coupled with a Two-Dimensional Volatility Basis Set (2D-VBS) module, and a long-term emission inventory of full-volatility organic compounds in China and conduct source apportionment and sensitivity analysis. The simulation results show that, from 2005 to 2019, the OA concentration in China decreased from 24.0 to 12.8 µg/m3 with most of the reduction from POA. The OA pollution from residential biomass burning declined 75% from 2005 to 2019, while it is still the major OA source in China. OA pollution from VCP increased by more than 2-fold and became the largest SOA source in China. From 2014 to 2019, the NOx control in China slightly offset the decrease of SOA concentration due to elevated oxidation capacity.
Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , China , Aerosoles/análisisRESUMEN
In recent years, the ozone (O3) concentration has showed a rising trend in China, becoming second only to PM2.5 as an important factor affecting air quality. To grasp the spatial-temporal variations characteristics of O3 and the associated health impacts during the implementation of the three-year plan on defending the blue sky in the Yangtze River Delta (YRD) region, data collected from 210 monitoring stations in the YRD from 2017 to 2020 were analyzed using the global Moran's index and Getis-Ord Gi* index methods, and the associated health benefits of reduced O3 exposure were evaluated using the health risk and environmental value assessment methods. The results showed that during the study period, the interquartile range (IQR) of the annual average O3 concentration and that of the warm season both presented a declining trend. The average O3 concentrations in both warm and cold seasons showed a similar spatial distribution pattern, with the northern part exhibiting the higher concentrations and the southern part showing the lower concentrations. Furthermore, the O3 concentrations in the warm season were characterized by high O3 concentrations clustering in the northern and central part of the region. The proportion of the population exposure to annual average O3 concentration over 160 µg·m-3 decreased from 72.3% in 2017 to 34.8% in 2020 in the YRD. Although the population-weighted annual mean O3 concentration in the whole YRD region showed a downward trend, some cities in western Anhui province, northern Jiangsu province, and central Jiangsu province showed fluctuations and even an increasing trend. In terms of health benefits, there were 3782 cases (95% CI:2050-5511 cases) of avoided premature deaths associated with reduced O3 concentrations in the warm season in 2020 compared to 2017. The total health benefit was 26198 million yuan (95% CI:14201-38175 million yuan). Compared to the cost of the main O3 precursor emission reduction, the cost-benefits ratio was 1:1.67 to 3.23.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Salud Poblacional , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Estaciones del Año , China , Material Particulado/análisisRESUMEN
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (â¼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , China , Ozono/análisis , Monitoreo del Ambiente , Nitrógeno/análisisRESUMEN
BACKGROUND: Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Luo Tong formula (LTF), a classical traditional Chinese medicine (TCM) prescription, consists of four plants that have been widely and effectively used to treat DR. Previous work in our laboratory has confirmed that LTF can effectively ameliorate DR. However, the potential mechanism underlying the therapeutic effect of LTF on DR has not been fully elucidated. To explore the potential mechanism of action through which LTF prevents and alleviates DR from an inflammation and gut microbiota perspective. MATERIALS AND METHODS: Metabolite profiling of LTF was performed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Type 1 diabetes was induced in male Sprague Dawley (SD) rats via tail vein injection of 45 mg/kg streptozotocin. Next, 100 SD rats were randomly divided into four groups, normal control; diabetic control; diabetic + insulin + calcium dobesilate; and diabetic + insulin + LTF. After 12 weeks of treatment, glucose metabolism, fundus oculi, blood-retinal barrier permeability, retinal thickness, microvascular damage, as well as cell junction expression in retinas were measured and the changes observed in different groups were compared. Finally, the alteration in gut microbiota and inflammatory cytokine expression in serum and tissues were monitored, and their correlation was analyzed. RESULTS: A total of 1024 valid peaks were obtained for LTF using GC-MS. The HbA1c and fasting blood glucose (FBG) levels in the LTF group were slightly decreased. LTF exerted protective effects on fundus oculi and the retina structure to different degrees. LTF attenuated systemic and local retinal inflammation by significantly decreasing the levels of seven pro-inflammatory cytokines, including ICAM-1, IL-6, IL-8, MCP-1, VCAM-1, VEGF, and IL-1ß. LTF restored the intestinal microbiota of diabetic rats to levels that were similar to those of normal rats. Further analysis revealed that Enterobacteriales, Prevotellaceae, Enterobacteriaceae, Bacteroides, and Klebsiella were significantly and positively correlated with the inflammatory factors in DR after LTF treatment. CONCLUSIONS: Our results revealed the mechanisms underlying the preventive effects of LTF on DR development and progression. LTF inhibited pathological changes in retinal histopathology, cell composition, and cell junction proteins while effectively ameliorating systemic and local retinal inflammation via regulating pivotal gut microbiota.
RESUMEN
During the Covid-19 outbreak, strict lockdown measures led to notable reductions in transportation-related emissions and significantly altered atmospheric pollution characteristics in urban and suburban areas. In this work, we compare comprehensive online measurements of PM2.5 major components and organic molecular markers in a suburban location in Shanghai, China before lockdown (Dec. 28, 2019 to Jan. 23, 2020) and during lockdown (Jan. 24 to Feb. 9, 2020). The NOx levels declined sharply by 59% from 44 to 18 ppb during the lockdown, while O3 rose two times higher to 42 ppb. The PM2.5 level dropped from 64 to 49 µg m-3 (-24%). The major components all showed reductions, with the reduction of nitrate most prominent at -58%, followed by organics at -19%, and sulfate at -17%. Positive matrix factorization analysis identifies fourteen source factors, including nine primary sources and five secondary sources. The secondary sources consist of sulfate-rich factor, nitrate-rich factor, and three secondary organic aerosol (SOA) factors, with SOA_I being anthropogenic SOA, SOA_II associated with later generation products of organic oxidation, and SOA_III being biogenic SOA. The combined secondary sources contributed to 69% and 63% (40 and 22 µg m-3) of PM2.5 before and during lockdown, respectively, among which the reductions in the nitrate-rich (-55%) factor was the most prominent. Among primary sources, large reductions (>80%) were observed in contributions from industrial, cooking, and vehicle emissions. Unlike some studies reporting that the restriction during the Covid-19 resulted in enhanced secondary sulfate and SOA formation, we observed decreases in both secondary inorganic and SOA formation despite the overall elevated oxidizing capacity in the suburban site. Our results indicate that the formation change in secondary inorganic and organic compounds in response to substantial reductions in urban primary precursors are different for urban and suburban environments.
RESUMEN
High particulate matter (PM) pollution episodes still occur occasionally in urban China, despite of improvements in recent years. Investigating the influencing factors of high-PM episodes is beneficial in the formulation of effective control measures. We herein present the effects of weather condition, emission source, and chemical conversion on the occurrence of high-PM episodes in urban Shanghai using multiple online measurements. Three high-PM episodes, i.e., locally-accumulated, regionally-transported, and dust-affected ones, as well as a clean period were selected. Stagnant air with temperature inversion was found in both locally-accumulated and regionally-transported high-PM episodes, but differences in PM evolution were observed. In the more complicated dust-affected episode, the weather condition interacted with the emission/transport sources and chemical conversion, resulting in consecutive stages with different PM characteristics. Specifically, there were (1) stronger local accumulation in the pre-dust period, (2) dust-laden air with aged organic aerosol (OA) upon dust arrival, (3) pollutants being swept into the ocean, and (4) back to the city with aged OA. Our results suggest that (a) local emissions could be rapidly oxidized in some episodes but not all, (b) aged OA from long-range transport (aged in space) had a similar degree of oxygenation compared to the prolonged local oxidation (aged in time), and (c) OA aged over land and over the ocean were similar in chemical characteristics. The findings help better understand the causes and evolution of high-PM episodes, which are manifested by the interplays among meteorology, source, and chemistry, providing a scientific basis for control measures.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Material Particulado/análisis , Meteorología , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , China , Aerosoles/análisis , Polvo/análisis , Contaminación del Aire/análisisRESUMEN
Communication between plants and microorganisms is vital because it influences their growth, development, defense, propagation, and metabolism in achieving maximal fitness. N-acetylglucosamine (N-GlcNAc), the building block of bacterial and fungal cell walls, was first reported to promote tomato plant growth via stimulation of microorganisms typically known to dominate the tomato root rhizosphere, such as members of Proteobacteria and Actinobacteria. Using KEGG pathway analysis of the rhizosphere microbial operational taxonomic units, the streptomycin biosynthesis pathway was enriched in the presence of N-GlcNAc. The biosynthesis of 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol, two foremost types of plant growth promotion-related volatile organic compounds, were activated in both Bacillus subtilis and Streptomyces thermocarboxydus strains when they were cocultured with N-GlcNAc. In addition, the application of N-GlcNAc increased indole-3-acetic acid production in a dose-dependent manner in strains of Bacillus cereus, Proteus mirabilis, Pseudomonas putida, and S. thermocarboxydus that were isolated from an N-GlcNAc-treated tomato rhizosphere. Overall, this study found that N-GlcNAc could function as microbial signaling molecules to shape the community structure and metabolism of the rhizosphere microbiome, thereby regulating plant growth and development and preventing plant disease through complementary plant-microbe interactions. IMPORTANCE While the benefits of using plant growth-promoting rhizobacteria (PGPRs) to enhance crop production have been recognized and studied extensively under laboratory conditions, the success of their application in the field varies immensely. More fundamentally explicit processes of positive, plant-PGPRs interactions are needed. The utilization of organic amendments, such as chitin and its derivatives, is one of the most economical and practical options for improving soil and substrate quality as well as plant growth and resilience. In this study, we observed that the chitin monomer N-GlcNAc, a key microbial signaling molecule produced through interactions between chitin, soil microbes, and the plants, positively shaped the community structure and metabolism of the rhizosphere microbiome of tomatoes. Our findings also provide a new direction for enhancing the benefits and stability of PGPRs in the field.
Asunto(s)
Microbiota , Solanum lycopersicum , Acetilglucosamina , Quitina , Solanum lycopersicum/microbiología , Microbiota/fisiología , Raíces de Plantas/microbiología , Plantas , Rizosfera , Suelo/química , Microbiología del SueloRESUMEN
Nitroaromatic compounds (NACs) are an important class of nitrogen-containing compounds in fine particles. The investigation of characteristics and seasonal variation of NACs in PM2.5 increases our knowledge about nitrogen-containing compounds and contributes to the scientific basis in formulating reduction policies of NOx in urban areas. In this study, we analyzed the chemical composition of PM2.5 samples collected from March 2018 to February 2019 in an urban location in Shanghai. A total of 2439-3695 organic molecular formulas were detected using UPLC-Orbitrap MS. Nine NACs were quantified using an internal standard method. In spring, ρ(NACs) ranged from 3.12 to 16.76 ng·m-3, and the average concentration was 9.31 ng·m-3. In summer, it ranged from 1.05 to 9.70 ng·m-3, and the average value was 4.16 ng·m-3. In autumn, it ranged from 2.87 to 36.27 ng·m-3, and its average was 9.84 ng·m-3. In winter, it ranged from 4.83 to 56.23 ng·m-3, and the average was 22.37 ng·m-3. 4-Nitrophenol accounted for more than 25% of the quantified NACs in different seasons. In summer, the concentration of 5-nitrosalicylic acid accounted for 36%, but it decreased to 19% in winter. NACs in summer mainly originated from secondary formation, as evidenced by their clear correlation with the oxidant level, whereas biomass burning became the main source of NACs in winter.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Nitrógeno , Material Particulado/análisis , Estaciones del AñoRESUMEN
Pancreatic α-cells are important in maintaining metabolic homeostasis, but their role in regulating maternal metabolic adaptations to pregnancy has not been studied. The objective of this study was to determine whether pancreatic α-cells respond to pregnancy and their contribution to maternal metabolic adaptation. With use of C57BL/6 mice, the findings of our study showed that pregnancy induced a significant increase of α-cell mass by promoting α-cell proliferation that was associated with a transitory increase of maternal serum glucagon concentration in early pregnancy. Maternal pancreatic GLP-1 content also was significantly increased during pregnancy. Using the inducible Cre/loxp technique, we ablated the α-cells (α-null) before and during pregnancy while maintaining enteroendocrine L-cells and serum GLP-1 in the normal range. In contrast to an improved glucose tolerance test (GTT) before pregnancy, significantly impaired GTT and remarkably higher serum glucose concentrations in the fed state were observed in α-null dams. Glucagon receptor antagonism treatment, however, did not affect measures of maternal glucose metabolism, indicating a dispensable role of glucagon receptor signaling in maternal glucose homeostasis. However, the GLP-1 receptor agonist improved insulin production and glucose metabolism of α-null dams. Furthermore, GLP-1 receptor antagonist Exendin (9-39) attenuated pregnancy-enhanced insulin secretion and GLP-1 restored glucose-induced insulin secretion of cultured islets from α-null dams. Together, these results demonstrate that α-cells play an essential role in controlling maternal metabolic adaptation to pregnancy by enhancing insulin secretion.
Asunto(s)
Células Secretoras de Glucagón , Islotes Pancreáticos , Animales , Femenino , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Receptores de Glucagón/metabolismoRESUMEN
Fruit softening exacerbates mechanical damage incurred during shipping and handling and the increase in pathogen susceptibility. Here, oligogalacturonides (OGs) produced by fungal polygalacturonase (PG) delayed fruit softening in tomato and maintained fruit firmness at 8.37 ± 0.45 N at 13 d of storage, which was consistent with the fruit firmness level of 5 d in the control groups. From RNA sequencing data in line production of phytohormones, we confirmed ethylene and jasmonic acid signals, the MAPK signaling cascade, and calmodulin involved in the OG-mediated firmness response of whole fruit. SlPG2, SlPL3, and SlPL5 were the major contributing factors for fruit softening, and their expression decreased continuously upon OG application. Suppression of the expression of ethylene response factors using a virus-induced gene-silencing strategy revealed that SlERF6 was negatively involved in OG-restrained fruit softening. Taken together, these results indicated that fungal PG-generated OGs have potential application value in controlling tomato fruit softening.
Asunto(s)
Poligalacturonasa , Solanum lycopersicum , Frutas/metabolismo , Hongos/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismoRESUMEN
Cooking organic aerosol (COA) is an important source of particulate pollutants in urbanized regions. Yet, the diversity and complexity of COA components make direct identification and quantification of COA difficult. In this study, we conducted collocated OA measurements with an aerosol mass spectrometer (AMS) and a thermal desorption aerosol gas chromatography-mass spectrometer (TAG) in Shanghai. Cooking molecular tracers (e.g., C18 fatty acids, azelaic acid) measured by TAG provide unambiguous source information for evaluating the tracer ion (C6H10O+, m/z 98) used for identification and apportionment of COA in AMS analysis. Based on the collocated AMS and TAG measurements, two COA factors, namely, a primary COA (PCOA) and an oxygenated COA (OCOA) produced from rapid oxygenation of freshly emitted PCOA, were identified. Criteria for identifying COA factors from AMS analysis with different oxygenation levels are proposed, i.e., characteristic mass spectra, temporal variations, etc. Furthermore, two positive matrix factorization approaches, namely, AMS-PMF and the molecular marker (MM)-PMF, were compared for COA quantification, where high consistency was found with the contribution of COA to total PM2.5 mass estimated to be 9 ± 7% by AMS-PMF and 6 ± 5% by the MM-PMF. Our study highlights the important impacts of cooking activities on air quality in urban areas. We also demonstrate the advantage of conducting collocated measurements using multiple high time resolution mass spectrometric techniques in advancing our understanding of atmospheric OA chemistry and improving the accuracy of source apportionment.