Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2329: 29-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085213

RESUMEN

The anaphase promoting complex/cyclosome (APC/C), a large E3 ubiquitin ligase, is a key regulator of mitotic progression. Upon activation in mitosis, the APC/C targets its two essential substrates, securin and cyclin B, for proteasomal destruction. Cyclin B is the activator of cyclin-dependent kinase 1 (Cdk1), the major mitotic kinase, and both cyclin B and securin are safeguards of sister chromatid cohesion. Conversely, the degradation of securin and cyclin B promotes sister chromatid separation and mitotic exit. The negative feedback loop between Cdk1 and APC/C-Cdk1 activating the APC/C and the APC/C inactivating Cdk1-constitutes the core of the biochemical cell cycle oscillator.Since its discovery three decades ago, the mechanisms of APC /C regulation have been intensively studied, and several in vitro assays exist to measure the activity of the APC /C in different activation states. However, most of these assays require the purification of numerous recombinant enzymes involved in the ubiquitylation process (e.g., ubiquitin, the E1 and E2 ubiquitin ligases, and the APC /C) and/or the use of radioactive isotopes. In this chapter, we describe an easy-to-implement method to continuously measure APC /C activity in Xenopus laevis egg extracts using APC /C substrates fused to fluorescent proteins and a fluorescence plate reader. Because the egg extract provides all important enzymes and proteins for the reaction, this method can be used largely without the need for recombinant protein purification. It can also easily be adapted to test the activity of APC /C mutants or investigate other mechanisms of APC /C regulation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclina B/metabolismo , Proteínas Luminiscentes/metabolismo , Securina/metabolismo , Xenopus laevis/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Retroalimentación Fisiológica , Femenino , Proteínas Luminiscentes/genética , Mitosis , Imagen Óptica/instrumentación , Óvulo/metabolismo , Proteínas Quinasas/metabolismo , Proteolisis , Proteínas Recombinantes/metabolismo , Securina/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
2.
Nat Struct Mol Biol ; 27(6): 550-560, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393902

RESUMEN

The interplay between E2 and E3 enzymes regulates the polyubiquitination of substrates in eukaryotes. Among the several RING-domain E3 ligases in humans, many utilize two distinct E2s for polyubiquitination. For example, the cell cycle regulatory E3, human anaphase-promoting complex/cyclosome (APC/C), relies on UBE2C to prime substrates with ubiquitin (Ub) and on UBE2S to extend polyubiquitin chains. However, the potential coordination between these steps in ubiquitin chain formation remains undefined. While numerous studies have unveiled how RING E3s stimulate individual E2s for Ub transfer, here we change perspective to describe a case where the chain-elongating E2 UBE2S feeds back and directly stimulates the E3 APC/C to promote substrate priming and subsequent multiubiquitination by UBE2C. Our work reveals an unexpected model for the mechanisms of RING E3-dependent ubiquitination and for the diverse and complex interrelationship between components of the ubiquitination cascade.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Citidina Trifosfato/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Poliubiquitina/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
3.
Mol Cell ; 63(4): 593-607, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27522463

RESUMEN

The mitotic checkpoint complex (MCC) coordinates proper chromosome biorientation on the spindle with ubiquitination activities of CDC20-activated anaphase-promoting complex/cyclosome (APC/C(CDC20)). APC/C(CDC20) and two E2s, UBE2C and UBE2S, catalyze ubiquitination through distinct architectures for linking ubiquitin (UB) to substrates and elongating polyUB chains, respectively. MCC, which contains a second molecule of CDC20, blocks APC/C(CDC20)-UBE2C-dependent ubiquitination of Securin and Cyclins, while differentially determining or inhibiting CDC20 ubiquitination to regulate spindle surveillance, checkpoint activation, and checkpoint termination. Here electron microscopy reveals conformational variation of APC/C(CDC20)-MCC underlying this multifaceted regulation. MCC binds APC/C-bound CDC20 to inhibit substrate access. However, rotation about the CDC20-MCC assembly and conformational variability of APC/C modulate UBE2C-catalyzed ubiquitination of MCC's CDC20 molecule. Access of UBE2C is limiting for subsequent polyubiquitination by UBE2S. We propose that conformational dynamics of APC/C(CDC20)-MCC modulate E2 activation and determine distinctive ubiquitination activities as part of a response mechanism ensuring accurate sister chromatid segregation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Segregación Cromosómica , Microscopía por Crioelectrón , Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Ubiquitina/metabolismo , Sitios de Unión , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/ultraestructura , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Ubiquitinación
4.
Cell ; 165(6): 1440-1453, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259151

RESUMEN

Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Ubiquitinación
5.
Proc Natl Acad Sci U S A ; 113(19): E2570-8, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114510

RESUMEN

Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Mitosis/fisiología , Ciclosoma-Complejo Promotor de la Anafase/química , Sitios de Unión , Proteínas Cdc20/química , Activación Enzimática , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida/métodos , Fosforilación , Unión Proteica , Transfección/métodos
6.
Proc Natl Acad Sci U S A ; 112(17): 5272-9, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25825779

RESUMEN

For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2∼Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaborates with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING-E2∼Ub catalytic modules such as APC11-UBCH10∼Ub collide with distally tethered disordered substrates remains poorly understood. We report structural mechanisms of UBCH10 recruitment to APC(CDH1) and substrate ubiquitination. Unexpectedly, in addition to binding APC11's RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC(CDH1)-UBCH10∼Ub-substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin-RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin-RING-E2 interactions establish APC's specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. We propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3-E2∼Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina/química , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Cristalografía por Rayos X , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
J Mol Biol ; 427(8): 1748-64, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25490258

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the "Platform" centers around a cullin-RING-like E3 ligase catalytic core; the "Arc Lamp" is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, via their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a >200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.


Asunto(s)
Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Subunidad Apc7 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc7 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
8.
Mol Cell ; 56(2): 246-260, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25306923

RESUMEN

Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here we show that human APC's RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms. During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.


Asunto(s)
Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Poliubiquitina/biosíntesis , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/fisiología , Secuencia de Aminoácidos , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Puntos de Control del Ciclo Celular , Células HeLa , Humanos , Datos de Secuencia Molecular , Poliubiquitina/genética , Estructura Terciaria de Proteína
9.
Structure ; 22(8): 1090-1104, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24980795

RESUMEN

Plk4 family kinases control centriole assembly. Plk4s target mother centrioles through an interaction between their cryptic polo box (CPB) and acidic regions in the centriolar receptors SPD-2/Cep192 and/or Asterless/Cep152. Here, we report a crystal structure for the CPB of C. elegans ZYG-1, which forms a Z-shaped dimer containing an intermolecular ß sheet with an extended basic surface patch. Biochemical and in vivo analysis revealed that electrostatic interactions dock the ZYG-1 CPB basic patch onto the SPD-2-derived acidic region to promote ZYG-1 targeting and new centriole assembly. Analysis of a different crystal form of the Drosophila Plk4 (DmPlk4) CPB suggests that it also forms a Z-shaped dimer. Comparison of the ZYG-1 and DmPlk4 CPBs revealed structural changes in the ZYG-1 CPB that confer selectivity for binding SPD-2 over Asterless-derived acidic regions. Overall, our findings suggest a conserved mechanism for centriolar docking of Plk4 homologs that initiate daughter centriole assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centriolos/fisiología , Modelos Moleculares , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Centriolos/metabolismo , Dimerización , Datos de Secuencia Molecular , Unión Proteica , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Especificidad de la Especie , Relación Estructura-Actividad
10.
Worm ; 2(3): e25214, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24778935

RESUMEN

The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. It has a unique 9-fold symmetry and its assembly is governed by at least five component proteins (SPD-2, ZYG-1, SAS-5, SAS-6 and SAS-4), which are recruited in a hierarchical order. Recently published structural studies of the SAS-6 N-terminal domain have greatly advanced our understanding of the mechanisms of centriole assembly. However, it remains unclear how the weak interaction between the SAS-6 N-terminal head groups could drive the assembly of a closed ring-like structure, and what determines the stacking of multiple rings on top one another in centriole duplication. We recently reported that SAS-5 binds specifically to a very narrow region of the SAS-6 central coiled coil through its C-terminal domain (CTD, residues 391-404). Here, we further demonstrate by both static light scattering and small angle X-ray scattering that the SAS-5 N-terminal domain (NTD, residues 1-260) forms a tetramer. Specifically, we found that the tetramer is formed by SAS-5 residues 82-260, whereas residues 1-81 are intrinsically disordered. Taking these results together, we propose a working model for SAS-5-mediated assembly of the multi-layered central tube structure.

11.
EMBO J ; 31(22): 4334-47, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23064147

RESUMEN

The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS-5 and SAS-6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS-5 C-terminal domain (residues 390-404) specifically binds to a narrow central region (residues 275-288) of the SAS-6 coiled coil. This was supported by the crystal structure of the SAS-6 coiled-coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS-6 CCD, which gives rise to an anti-parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmetric centriole.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Centriolos/química , Cristalografía por Rayos X , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína
12.
Org Biomol Chem ; 10(37): 7566-77, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22895883

RESUMEN

Antisense oligonucleotides and siRNAs are potential therapeutic agents and their chemical modifications play an important role to improve the properties and activities of oligonucleotides. Isonucleoside is a type of nucleoside analogue, in which the nucleobase is moved from C-1 to other positions of ribose. In this report, a novel isonucleoside 5 containing a 5'-CH(2)-extended chain at the sugar moiety was synthesized, thus isoadenosine 5a and isothymidine 5b were incorporated into a DNA single strand and siRNA. It was found that isonucleoside 5 modified oligonucleotides can form stable double helical structures with their complementary DNA and RNA and the stability towards nuclease and ability to activate RNase H are more promising compared with the unmodified, natural analogues. In siRNA, passenger strand modified with isonucleoside (5a/b) at 3' or 5' terminal can retain the silencing activity and minimize the passenger strand specific off-target effect.


Asunto(s)
Silenciador del Gen/efectos de los fármacos , Nucleósidos/química , Oligonucleótidos/farmacología , ARN Interferente Pequeño/farmacología , Células HEK293 , Humanos , Luciferasas/genética , Estructura Molecular , Oligonucleótidos/síntesis química , Oligonucleótidos/química , ARN Interferente Pequeño/síntesis química , ARN Interferente Pequeño/química , Estereoisomerismo , Factores de Tiempo
13.
Nucleic Acids Res ; 37(22): 7560-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19815667

RESUMEN

Silencing specificity is a critical issue in the therapeutic applications of siRNA, particularly in the treatment of single nucleotide polymorphism (SNP) diseases where discrimination against single nucleotide variation is demanded. However, no generally applicable guidelines are available for the design of such allele-specific siRNAs. In this paper, the issue was approached by using a reporter-based assay. With a panel of 20 siRNAs and 240 variously mismatched target reporters, we first demonstrated that the mismatches were discriminated in a position-dependent order, which was however independent of their sequence contexts using position 4th, 12th and 17th as examples. A general model was further built for mismatch discrimination at all positions using 230 additional reporter constructs specifically designed to contain mismatches distributed evenly along the target regions of different siRNAs. This model was successfully employed to design allele-specific siRNAs targeting disease-causing mutations of PIK3CA gene at two SNP sites. Furthermore, conformational distortion of siRNA-target duplex was observed to correlate with the compromise of gene silencing. In summary, these findings could dramatically simplify the design of allele-specific siRNAs and might also provide guide to increase the specificity of therapeutic siRNAs.


Asunto(s)
Alelos , Polimorfismo de Nucleótido Simple , Interferencia de ARN , ARN Interferente Pequeño/química , Disparidad de Par Base , Línea Celular , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Modelos Genéticos , Conformación de Ácido Nucleico , Nucleótidos/química , Fosfatidilinositol 3-Quinasas/genética
14.
Biochem Biophys Res Commun ; 368(3): 703-8, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18252196

RESUMEN

RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.


Asunto(s)
Modelos Químicos , Modelos Genéticos , Interferencia de ARN/fisiología , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/genética , Animales , Células Cultivadas , Simulación por Computador , Drosophila melanogaster , Modelos Moleculares , Complejo Silenciador Inducido por ARN/ultraestructura
15.
Bioconjug Chem ; 18(4): 1017-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17539595

RESUMEN

A novel class of aminoisonucleoside was synthesized and incorporated into a luciferase gene-targeting siRNA. Structural and functional analyses of such a kind of siRNAs indicated that sense strand modifications with aminoisonucleoside at the 3' or 5' terminal, such as ssIso-1 and ssIso-2, have less effect on RNA duplex thermal and serum stabilities, and their functional activities are also comparable to their native siRNAs. In contrast, antisense strand modifications with aminoisonucleoside at the corresponding positions, such as asIso-2 or asIso-1, bring a striking negative effect on RNA duplex stability but still maintain around 40-50% of gene knockdown.


Asunto(s)
Nucleósidos/química , Interferencia de ARN , ARN Interferente Pequeño/síntesis química , Línea Celular , Calor , Humanos , Luciferasas/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...