Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(26): 18104-18116, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899355

RESUMEN

The submarine-confined bubble swarm is considered an important constraining environment for the early evolution of living matter due to the abundant gas/water interfaces it provides. Similarly, the spatiotemporal characteristics of the confinement effect in this particular scenario may also impact the origin, transfer, and amplification of chirality in organisms. Here, we explore the confinement effect on the chiral hierarchical assembly of the amphiphiles in the confined bubble array stabilized by the micropillar templates. Compared with the other confinement conditions, the assembly in the bubble scenario yields a fractal morphology and exhibits a unique level of the chiral degree, ordering, and orientation consistency, which can be attributed to the characteristic interfacial effects of the rapidly formed gas/water interfaces. Thus, molecules with a balanced amphiphilicity can be more favorable for the promotion. Not limited to the pure enantiomers, chiral amplification of the enantiomer-mixed assembly is observed only in the bubble scenario. Beyond the interfacial mechanism, the fast formation kinetics of the confined liquid bridges in the bubble scenario endows the assembly with the tunable hierarchical morphology when regulating the amphiphilicity, aggregates, and confined spaces. Furthermore, the chiral-induced spin selectivity (CISS) effect of the fractal hierarchical assembly was systematically investigated, and a strategy based on photoisomerization was developed to efficiently modulate the CISS effect. This work provides insights into the robustness of confined bubble swarms in promoting a chiral hierarchical assembly and the potential applications of the resulting chiral hierarchical patterns in solid-state spintronic and optical devices.

2.
Int J Biol Macromol ; 273(Pt 1): 133084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871104

RESUMEN

Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood. BR is perceived by the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its co-receptor BRI1-associated kinase 1 (BAK1) to form the receptor complex, eventually inducing BR-regulated responses. To response stress, a wide range of NO-mediated protein modifications is undergone in eukaryotic cells. Here, we showed that BR participated in NO-enhanced salt tolerance of tomato seedlings (Solanum lycopersicum cv. Micro-Tom) and NO may activate BR signaling under salt stress, which was related to NO-mediated S-nitrosylation. Further, in vitro and in vivo results suggested that BAK1 (SERK3A and SERK3B) was S-nitrosylated, which was inhibited under salt condition and enhanced by NO. Accordingly, knockdown of SERK3A and SERK3B reduced the S-nitrosylation of BAK1 and resulted in a compromised BR response, thereby abolishing NO-induced salt tolerance. Besides, we provided evidence for the interaction between BRI1 and SERK3A/SERK3B. Meanwhile, NO enhanced BRI1-SERK3A/SERK3B interaction. These results imply that NO-mediated S-nitrosylation of BAK1 enhances the interaction BRI1-BAK1, facilitating BR response and subsequently improving salt tolerance in tomato. Our findings illustrate a mechanism by which redox signaling and BR signaling coordinate plant growth in response to abiotic stress.


Asunto(s)
Óxido Nítrico , Proteínas de Plantas , Tolerancia a la Sal , Plantones , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Plantones/metabolismo , Tolerancia a la Sal/genética , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Brasinoesteroides/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Transducción de Señal
3.
J Sci Food Agric ; 104(10): 5982-5990, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38427028

RESUMEN

BACKGROUND: One of the greatest challenges in using Lactobacillus acidophilus as a probiotic is acid stress. The current research aimed to identify substances that help L. acidophilus resist acid stress; this was achieved through assessing its nutrient consumption patterns under various pH conditions. RESULTS: The consumption rates of alanine, uracil, adenine, guanine, niacin, and manganese were consistently higher than 60% for L. acidophilus LA-5 cultured at pH 5.8, 4.9, and 4.4. The consumption rates of glutamic acid + glutamine and thiamine increased with decreasing pH and were higher than 60% at pH 4.9 and 4.4. The viable counts of L. acidophilus LA-5 were significantly increased under the corresponding acidic stress conditions (pH 4.9 and 4.4) through the appropriate addition of either alanine (3.37 and 2.81 mmol L-1), glutamic acid + glutamine (4.77 mmol L-1), guanine (0.13 and 0.17 mmol L-1), niacin (0.02 mmol L-1), thiamine (0.009 mmol L-1), or manganese (0.73 and 0.64 mmol L-1) (P < 0.05). The viable counts of L. acidophilus LA-5 cultured in a medium supplemented with combined nutritional factors was 1.02-1.03-fold of the counts observed in control medium under all acid conditions (P < 0.05). CONCLUSION: Alanine, glutamic acid + glutamine, guanine, niacin, thiamine, and manganese can improve the growth of L. acidophilus LA-5 in an acidic environment in the present study. The results will contribute to optimizing strategies to enhance the acid resistance of L. acidophilus and expand its application in the fermentation industry. © 2024 Society of Chemical Industry.


Asunto(s)
Lactobacillus acidophilus , Probióticos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Nutrientes/metabolismo , Fermentación
4.
Materials (Basel) ; 16(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895733

RESUMEN

The challenge of developing a high-efficiency microwave absorbent remains, because of the compatibility between microwave absorption and high-temperature-resistant performance in practical application. Herein, a facile method is used to obtain serial MXene/BN-zxy composites, where zx:y indicates the weight ratio of MXene and boron nitride (BN) in the composites, with adjustable microwave absorption performance (MAP) which can be regulated by the ratio of MXene and the BN nanosheet. In particular, the as-prepared absorbents with supercapacitance-like structure significantly enhanced the MAP and could be served more than 900 °C. The results of MAP reveal that the minimum reflection loss (RL) can reach -20.94 dB with a MXene/BN-101 composite coating thickness of 4.0 mm; the effective attenuation bandwidth (RL< -10 dB, i.e., 90% microwave energy is attenuated) is up to 9.71 GHz (7.94-17.65 GHz). From a detailed analysis, it is observed that attenuation is the critical limiting factor for MAPs rather than impedance mismatch, which can be assigned to the poor MAP of BN nanosheets. In any case, as-prepared absorbents have potential applications in the field of heating components.

5.
Angew Chem Int Ed Engl ; 62(28): e202300971, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165542

RESUMEN

The unprecedented development of perovskite solar cells (PSCs) makes them one of the most promising candidates for terawatt-scale green energy production with low cost. However, the high boiling point solvents during the solution-processed film deposition cause anisotropic crystal growth and toxic solvent vapor during high-throughput manufacturing. Here, a dual-component green solvent consisting of isopropyl acetate and acetonitrile is proposed to form a volatile perovskite precursor, which can realize the high-quality perovskite thin film deposition by intermediate phase regulation. A room-temperature stable perovskite intermediate phase is constructed with the engagement of isopropyl acetate as co-solvent, which suppresses the exploding nucleation rate in volatile perovskite precursor, providing a fine grain growth rate and wide processing window in scalable film deposition. The corresponding PSCs fabricated by blade coating without anti-solvents or gas quenching achieve power conversion efficiency (PCE) of 16.37 % and 15.29 % for the areas of 14.08 cm2 and 37.83 cm2 , respectively.

6.
Small ; 19(35): e2301362, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37170715

RESUMEN

Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity. It is also revealed that the differences in surface wettability and adhesion play the key role. Consequently, a flat pattern with thermodynamically favorable ordered structure and a sharp pattern with dynamically favorable disordered structure are achieved, which show different solid-state photoisomerization behaviors and photoresponsiveness. Interestingly, conductivity of sharp pattern with disordered structure is higher than that of flat pattern with layered ordered structure due to electronic transport mechanism of different spatial dimensions. This work opens a new way for manipulating the molecular self-assembly to control the morphology and function of molecular patterns.

7.
J Environ Manage ; 341: 117941, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178544

RESUMEN

Treatment of the planting and breeding waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for planting and breeding waste management which could be used as fertilizer. The purpose of this research was to evaluate the effect of planting and breeding waste on baby cabbage growth and soil properties, to establish a suitable agricultural cycle model for semi-arid area in central Gansu Province. The planting and breeding wastes [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR) and corn straw (CS)] were used as the raw materials in this study, which were designed 8 compost formulas for composting fermentation. With no fertilization (CK1) and local commercial organic fertilizer (CK2) as the control, the comprehensive evaluation of planting and breeding waste composts on the yield of baby cabbage, fertilizer utilization rate, soil physical and chemical properties and microbial diversity were studied to select the best compost formula suitable for the growth of baby cabbage. And the material flow and energy flow analysis of the circulation model established by the formula were carried out. The results showed that the biological yield and economic yield of baby cabbage, absorption and recycling utilization of total phosphorus (TP) and total potassium (TK) reached the maximum under the formula of SM: TV: MR: CS = 6:2:1:1. Compared with CK2, the formula of SM: TV: MR: CS = 6:2:1:1 significantly increased the richness of soil bacteria and beneficial bacteria Proteobacteria, and decreased the relative abundance of harmful bacteria Olpidiomycota. Principal component analysis showed the comprehensive score of SM: TV: MR: CS = 6:2:1:1 was the best organic compost formula suitable for producing high-quality and high-yield baby cabbage and improving soil environment. Therefore, this formula can be used as a reference organic fertilizer formula for field cultivation of baby cabbage.


Asunto(s)
Brassica , Compostaje , Bovinos , Femenino , Animales , Ovinos , Suelo/química , Estiércol , Fertilizantes , Fitomejoramiento , Nutrientes
8.
Chemistry ; 29(43): e202301055, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37208940

RESUMEN

Low band gap materials have always been a focus of attention due to their potential applications in various fields. In this work, a series of asymmetric bistricyclic aromatic ene (BAE) compounds with fluorenylidene-cyclopentadithiophene (FYT) skeleton were facially synthesized, which were modified with different substituents (-OMe, -SMe). The FYT core exhibit twisted C=C bond with dihedral angles around 30°, and the introduction of -SMe group can provide additional S⋅⋅⋅S interaction between molecules, which is conducive to the charge transporting. The UV-Vis spectra, electrochemistry and photoelectron spectroscopy revealed that these compounds have relatively narrow band gaps, particularly, the -SMe modified compounds have slightly lower HOMO and Fermi energy levels than that of the -OMe modified compounds. Furthermore, PSCs devices were fabricated with the three compounds as HTMs, and FYT-DSDPA exhibit the best performance among them, revealing the fine-tuning band structure could influence properties of HTMs.

9.
Microorganisms ; 11(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110447

RESUMEN

Composting, planting, and breeding waste for return to the field is the most crucial soil improvement method under the resource utilization of agricultural waste. However, how the vegetable yield and rhizosphere soil environment respond to different composts is still unknown. Therefore, eight formulations were designed for compost fermentation using agricultural waste [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR), and corn straw (CS)] without fertilizer (CK1) and local commercial organic fertilizer (CK2) as controls to study the yield and rhizosphere soil environment of greenhouse zucchini in response to different planting and breeding waste compost. Applying planting and breeding waste compost significantly increased the soil's organic matter and nutrient content. It inhibited soil acidification, which T4 (SM:TV:CS = 6:3:1) and T7 (SM:TV:MR:CS = 6:2:1:1) treatments affected significantly. Compared to CK2 treatment, T4 and T7 treatments showed a greater increase, with a significant increase of 14.69% and 11.01%, respectively. Therefore, T4, T7, and two control treatments were selected for high-throughput sequencing based on yield performance. Compared with the CK1 treatment, although multiple applications of chemical fertilizers led to a decrease in bacterial and fungal richness, planting and breeding waste compost maintained bacterial diversity and enhanced fungal diversity. Compared to CK2, the relative abundance increased in T7-treated Proteobacteria (Sphingomonas, Pseudomonas, and Lysobacter) and T4-treated Bacteroidetes (Flavobacterium) among bacteria. An increase in T4-treated Ascomycota (Zopfiella and Fusarium) and Basidiomycota among fungi and a decrease in T7-treated Mortierellomycota have been observed. Functional predictions of the bacterial Tax4Fun and fungal FUNGuild revealed that applying planting and breeding waste compost from the T4 treatment significantly increased the abundance of soil bacterial Metabolism of Cities, Genetic Information Processing, and Cellular Processes decreased the abundance of Pathotroph and Saprotroph-Symbiotroph fungi and increased the abundance of Saprotroph fungi. Overall, planting and breeding waste compost increased zucchini yield by improving soil fertility and microbial community structure. Among them, T4 treatment has the most significant effect, so T4 treatment can be selected as the optimized formulation of local commercial organic fertilizer. These findings have valuable implications for sustainable agricultural development.

10.
Sci Adv ; 9(11): eadf3567, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921052

RESUMEN

Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.

11.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 552-565, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36847089

RESUMEN

Na+/H+ antiporter (NHX) gene subfamily plays an important role in plant response to salt stress. In this study, we identified the NHX gene family members of Chinese cabbage and analyzed the expression patterns of BrNHXs gene in response to abiotic stresses such as high temperature, low temperature, drought and salt stress. The results showed that there were 9 members of the NHX gene family in Chinese cabbage, which were distributed on 6 chromosomes respectively. The number of amino acids was 513-1 154 aa, the relative molecular weight was 56 804.22-127 856.66 kDa, the isoelectric point was 5.35-7.68. Members of BrNHX gene family mainly existed in vacuoles, the gene structure is complete, and the number of exons is 11-22. The secondary structures of the proteins encoded by the NHX gene family in Chinese cabbage had alpha helix, beta turn and random coil, and the alpha helix occurred more frequently. Quantitative real-time PCR (qRT-PCR) analysis showed that the gene family members had different responses to high temperature, low temperature, drought and salt stress, and their expression levels differed significantly in different time periods. BrNHX02 and BrNHX09 had the most significant responses to these four stresses, and their expression levels were significantly up-regulated at 72 h after treatments, which could be used as candidate genes to further verify their functions.


Asunto(s)
Brassica , Genoma de Planta , Familia de Multigenes , Estrés Fisiológico/genética , Brassica/genética , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo
12.
Ecotoxicol Environ Saf ; 251: 114534, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36646009

RESUMEN

Mini Chinese cabbage (Brassica rapa L. ssp. Pekinensis) plays an important role in the supply of summer vegetables on the plateau in western China. In recent years, tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is a key inducer of tip-burn. As a new type plant hormone, brassinolide (BR) is involved in regulating a variety of biotic and abiotic stresses. To explore the alleviation role of BR in tip-burn caused by Ca2+ deficiency, a hydroponic experiment was conducted to study the relationship between BR and Ca2+ absorption and transport. The results showed that foliar spraying with 0.5 µM BR significantly reduced tip-burn incidence rate and disease index of mini Chinese cabbage caused by Ca2+ deficiency. Moreover, the dynamic monitoring results of tip-burn incidence rate showed that the value reached the highest on the ninth day after treatment. BR promoted the Ca2+ transport from roots to shoots and from outer leaves to inner leaves by increasing the activities of Ca2+-ATPase and H+-ATPase as well as the total ATP content, which provided power for Ca2+ transport. In addition, exogenous BR upregulated the relative expression levels of BrACA4, BrACA11, BrECA1, BrECA3, BrECA4, BrCAX1, BrCAS and BrCRT2, whereas Ca2+ deficiency induced down-regulation. In conclusion, exogenous BR can alleviate the Ca2+-deficiency induced tip-burn of mini Chinese cabbage by promoting the transport and distribution of Ca2+.


Asunto(s)
Brassica rapa , Brassica , Brassica rapa/metabolismo , Calcio/metabolismo , Brasinoesteroides/farmacología , Perfilación de la Expresión Génica , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
J Am Chem Soc ; 145(4): 2404-2413, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656650

RESUMEN

Constructing precisely oriented assemblies and exploring their orientation-dependent properties remain a challenge for Janus nanoparticles (JNPs) due to their asymmetric characteristics. Herein, we propose a bubble-driven instant quasi-1D interfacial strategy for the oriented assembly of JNP chains in a highly controllable manner. It is found that the rapid formation of templated bubbles can promote the interfacial orientation of JNPs kinetically, while the confined quasi-1D interface in the curved liquid bridge can constrain the disordered rotation of the particles, yielding well-oriented JNP chains in a long range. During the evaporation process, the interfacial orientation of the JNPs can be transferred to the assembled chains. By regulating the amphiphilicity of the JNPs, both heteraxial and coaxial JNP assemblies are obtained, which show different polarization dependences on light scattering, and the related colorimetric logic behaviors are demonstrated. This work demonstrates the great potential of patterned interfacial assembly with a manageable orientation and shows the broad prospect of asymmetric JNP assembly in constructing novel optoelectronic devices.

14.
Anal Methods ; 14(42): 4236-4244, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36250494

RESUMEN

Non-conjugated polymer nanoparticles (PNPs) have been widely reported for analytical applications; however, the development of an effective fluorescence signal-amplification scheme based on PNPs remains challenging. In this study, polyethyleneimine-based polymer nanoparticles (PEI-PNPs) were synthesized for interrogating the fluorescence signal-amplification analytical application of the PNPs. The PEI-PNPs with an aggregated PEI polymer structure were able to confine a large density of sub-fluorophores on an individual nanoparticle, enabling the realization of a signal-amplification effect. Herein, formaldehyde (FA) was utilized for enhancing the fluorescence intensity of the PEI-PNPs as a model to confirm our proof-of-concept strategy. Our results showed that a more than 9-fold signaling-enhancing ability for the sensing of FA was observed using the PEI-PNPs prepared with a higher PEI concentration. The possible mechanism for the FA amplified sensing was studied. In particular, the FA-recognition units were sub-fluorophores of PEI-PNPs, which were simultaneously formed with the preparation of the PEI-PNPs avoiding the leakage effect of dyes. We believe that the water-soluble and biocompatible PEI-PNPs are promising candidates for the detection of endogenous FA in living systems.


Asunto(s)
Nanopartículas , Polietileneimina , Polietileneimina/química , Nanopartículas/química , Polímeros/química , Colorantes Fluorescentes/química , Formaldehído
15.
PeerJ ; 10: e13994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164601

RESUMEN

The sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a plant-specific type of serine/threonine protein kinase that plays an important role in the physiological regulation of stress. The objective of this study was to identify and analyze the members of the SnRK2 gene family in cucumber and lay a foundation for further exploration of the mechanism of CsSnRK2 resistance to stress. Here, 12 SnRK2 genes were isolated from cucumber and distributed on five chromosomes, phylogenetic clustering divided these into three well-supported clades. In addition, collinearity analysis showed that the CsSnRK2 gene family underwent purifying selection pressure during evolution. CsSnRK2 genes of the same group have similar exons and conserved motifs, and intron length may be a specific imprint for the evolutionary amplification of the CsSnRK2 gene family. By predicting cis elements in the promoter, we found that the promoter region of CsSnRK2 gene members had various cis-regulatory elements in response to hormones and stress. Relative expression analysis showed that CsSnRK2.11 (group II) and CsSnRK2.12 (group III) were strongly induced by ABA, NaCl and PEG stress; whereas CsSnRK2.2 (group III) was not activated by any treatment. The response of group I CsSnRK2 to ABA, NaCl and PEG was weak. Furthermore, protein interaction prediction showed that multiple CsSnRK2 proteins interacted with four proteins including protein phosphatase 2C (PP2C), and it is speculated that the CsSnRK2 genes may also an independent role as a third messenger in the ABA signaling pathway. This study provides a reference for analyzing the potential function of CsSnRK2 genes in the future research.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Proteínas de Plantas/genética , Filogenia , Cloruro de Sodio , Proteínas Serina-Treonina Quinasas/genética
16.
Micromachines (Basel) ; 13(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014242

RESUMEN

In this study, a new kind of underwater transducer was developed using the d15 shear vibration mode of piezoelectric ceramic and a trapezoid transition layer. A series of finite element simulations were conducted to investigate how the boundary conditions of piezoelectric ceramic blocks affect the shear vibration. Finite element simulation was also used to investigate how the trapezoid transition layer transfers shear vibrations into longitudinal vibrations. A prototype of the proposed transducer was fabricated from piezoelectric vibrators working in the shear mode and a trapezoid transition layer. The underwater performance of this transducer was then tested. The results demonstrated that the transmitting voltage response, working frequency range, and bandwidth reached 163 dB (62 kHz), 37 kHz-68 kHz, and 31 kHz when the radiating area of the transducer was 120 mm × 240 mm. The transmitting voltage response caused by the d15 shear vibration mode reached 160.9 dB at 89 kHz.

17.
Food Res Int ; 158: 111575, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35840260

RESUMEN

After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.


Asunto(s)
Alimentos Fermentados , Isoflavonas , Ácido 3-Hidroxiantranílico , Antioxidantes/farmacología , Péptidos , Glycine max/química
18.
Adv Mater ; 34(17): e2200928, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35315543

RESUMEN

Organic semiconductor single-crystal (OSSC) patterns with precisely controlled orientation are of great significance to the integrated fabrication of devices with high and uniform performance. However, it is still challenging to achieve purely oriented OSSC patterns due to the complex nucleation and growth process of OSSCs. Here, a general direct writing approach is presented to readily obtain high-quality OSSC patterns with unique orientation. In specific, a direct writing method is demonstrated wherein the microscale meniscus is manipulated, which makes it possible to precisely control the nucleation and growth process of the OSSC because of its comparable size to the crystal nuclei. The resulting OSSC patterns are highly crystalline and purely oriented, in which each ribbon crystal shows a deviation angle of 33° to the printing direction. The mechanism of orientation purification is revealed experimentally and theoretically, and the results show that the TCL deformation caused by the difference in wettability and adhesive force, as well as the asymmetry of fluid concentration distribution, are the key factors leading to the selective deposition and unique orientation. Moreover, organic field-effect transistors (OFETs) and polarization-sensitive photodetectors are prepared based on the OSSC patterns with unique orientation, which exhibit higher device performance compared to the non-purely oriented crystal-based OFETs.

19.
PeerJ ; 10: e12786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35047239

RESUMEN

Abscisic acid (ABA) is a very important hormone in plants. It regulates growth and development of plants and plays an important role in biotic and abiotic stresses. The Pyrabactin resistance 1-like (PYR/PYL) proteins play a central role in ABA signal transduction pathways. The working system of PYL genes in cucumber, an important economical vegetable (Cucumis sativus L.), has not been fully studied yet. Through bioinformatics, a total of 14 individual PYL genes were identified in Chinese long '9930' cucumber. Fourteen PYL genes were distributed on six chromosomes of cucumber, and their encoded proteins predicted to be distributed in cytoplasm and nucleus. Based on the phylogenetic analysis, the PYL genes of cucumber, Arabidopsis, rice, apple, Brachypodium distachyon and soybeancould be classified into three groups. Genetic structures and conserved domains analysis revealed that CsPYL genes in the same group have similar exons and conserved domains. By predicting cis-elements in the promoters, we found that all CsPYL members contained hormone and stress-related elements. Additionally, the expression patterns of CsPYL genes were specific in tissues. Finally, we further examined the expression of 14 CsPYL genes under ABA, PEG, salt stress. The qRT-PCR results showed that most PYL gene expression levels were up-regulated. Furthermore, with different treatments about 3h, the relative expression of PYL8 was up-regulated and more than 20 times higher than 0h. It indicated that this gene may play an important role in abiotic stress.


Asunto(s)
Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Proteínas de Plantas/genética , Filogenia , Ácido Abscísico/farmacología , Arabidopsis/genética , Hormonas/metabolismo
20.
Org Lett ; 23(18): 7236-7241, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34463516

RESUMEN

A series of 3,6-di-tert-butyl carbazole-functionalized 9-borafluorene derivatives have been prepared with outstandingly strong photoluminescence with quantum yields up to ca. 100 and 94% for Mes*BF-pCz in solution and film, respectively. 1,3,5-Tris(trifluoromethyl)benzene (FMes)-substituted compounds exhibit enhanced Lewis acidity with coordination to weak nucleophiles like tetrahydrofuran, resulting in a long afterglow at low temperature. The large two-photon absorption cross-section of ca. 1103 GM for Mes*BF-pCz at 800 nm in CH2Cl2 indicated its potential application in bioimaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...