Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 461: 140893, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39178539

RESUMEN

In this study, ovalbumin (OV) and sodium alginate (SA), two macromolecular complexes, were coagulated into the emulsifier (OV/SA), which stabilized soybean oil by electrostatic interaction, hydrophobic interactions, and hydrogen bonding. The structure of OV/SA and properties of OV/SA Pickering emulsion were investigated. Additionally, the effect of emulsions on the gel and protein properties of hairtail surimi was studied. The results revealed that with the increasing concentration of OV/SA, the particle size and zeta potential value (negative value) of the emulsion initially decreased and then increased, while the rheological properties gradually improved. Compared with the surimi gel directly supplemented with soybean oil, the addition of emulsion enhanced gel strength, whiteness, water holding capacity, and hydrophobic interactions, resulting in a more stable gel network structure. In summary, incorporating emulsion into surimi at the same lipid content not only maintained its gel properties but also improved its color and compensated for lipid loss.

2.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850027

RESUMEN

Gelatin has played a great potential in food preservation because of its low price and superior film forming characteristics. This review provides a comprehensive overview of the latest research progress and application of gelatin preservation technologies (film, coating, antifreeze peptide, etc.), discussing their preservation mechanisms and efficiency through the viewpoints of quality and shelf life of animal and aquatic products as well as fruits and vegetables. It showed that bioactive and intelligent gelatin-based films exhibit antibacterial, antioxidant, water resistance and pH responsive properties, making them excellent for food preservation. In addition, pH responsive properties of films also intuitively reflect the freshness of food by color. Similarly, gelatin and its hydrolysate can be widely used in antifreeze peptides to reduce the mass loss of food during freezing and extend the shelf life of frozen food. However, extensive works are still required to extend their commercial application values.

3.
Anal Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324761

RESUMEN

Versatile, informative, sensitive, and specific nucleic acid detection plays a crucial role in point-of-care pathogen testing, genotyping, and disease monitoring. In this study, we present a novel one-pot Cas12b-based method coupled with the "Green-Yellow-Red" strategy for multiplex detection. By integrating RT-LAMP amplification and Cas12b cleavage in a single tube, the entire detection process can be completed within 1 h. Our proposed method exhibits high specificity, enabling the discrimination of single-base mutations with detection sensitivity approaching single molecule levels. Additionally, the fluorescent results can be directly observed by the naked eye or automatically analyzed using our custom-designed software Result Analyzer. To realize point-of-care detection, we developed a portable cartridge capable of both heating and fluorescence excitation. In a clinical evaluation involving 20 potentially SARS-CoV-2-infected samples, our method achieved a 100% positive detection rate when compared to standard RT-PCR. Furthermore, the identification of SARS-CoV-2 variants using our method yielded results that were consistent with the sequencing results. Notably, our proposed method demonstrates excellent transferability, allowing for the simultaneous detection of various pathogens and the identification of mutations as low as 0.5% amidst a high background interference. These findings highlight the tremendous potential of our developed method for molecular diagnostics.

4.
J Agric Food Chem ; 72(1): 857-864, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38134022

RESUMEN

Salmonellosis continues to impose a significant economic burden globally. Rapid and sensitive detection of Salmonella is crucial to preventing the outbreaks of foodborne illnesses, yet it remains a formidable challenge. Herein, a dual-functional tetrahedron multivalent aptamer assisted amplification-free CRISPR/Cas12a assay was developed for Salmonella detection. In the system, the aptamer was programmatically assembled on the tetrahedral DNA nanostructure to fabricate a multivalent aptamer (TDN-multiApt), which displayed a 3.5-fold enhanced avidity over the monovalent aptamer and possessed four CRISPR/Cas12a targeting fragments to amplify signal. Therefore, TDN-multiApt could directly activate Cas12a to achieve the second signal amplification without any nucleic acid amplification. By virtue of the synergism of high avidity and cascaded signal amplifications, the proposed method allowed the ultrasensitive detection of Salmonella as low as 7 cfu mL-1. Meanwhile, this novel platform also exhibited excellent specificity against target bacteria and performed well in the detection of various samples, indicating its potential application in real samples.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Humanos , Salmonella/genética , Oligonucleótidos , Bioensayo , Brotes de Enfermedades , Técnicas de Amplificación de Ácido Nucleico
5.
Anal Chim Acta ; 1284: 341998, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37996158

RESUMEN

BACKGROUND: Salmonella infection severely threatens human health and causes substantial medical and financial concerns. Sensitive and specific detection of Salmonella in food samples is crucial but remains challenging. While some traditional assays for S. typhimurium are reliable, they suffer from various limitations, such as being time-consuming (culture-based methods), involving intricate nucleic molecular extraction (polymerization chain reaction, PCR), and exhibiting inadequate sensitivity (enzyme-linked immunosorbent assay, ELISA). In this case, it is essential to establish a rapid, simple-operation, and sensitive method for monitoring S. typhimurium to preserve food quality and prevent contamination. RESULT: Herein, an amplification-free detection method for Salmonella was developed by coupling the aptamer magnetic separation with dual-functional HCR (hybridization chain reaction)-scaffold multivalent aptamer and the activity of CRISPR/Cas12a. In the detection system, the dual-functional HCR-scaffold multivalent aptamer with high binding affinity and specificity was fabricated in advance by assembling numerous Salmonella specific aptamers on the long HCR products. In addition to the enhanced affinity, the HCR-multiApt also contains a massive amount of repeated CRISPR-targetable DNA units in its HCR scaffold, which could trigger the trans-cleavage activity of Cas12a. In the presence of target bacteria, the HCR-scaffold multivalent aptamer could attach on the surface of bacteria effectively and amplified the signal of bacteria into CRISPR/Cas12a based fluorescent readout. The proposed detection system allowed for ultrasensitive detection of Salmonella in a linear range from 100 to 107 cfu mL-1 with a LOD (limit of detection) of 2 cfu mL-1. SIGNIFICANCE: The novel dual-functional HCR-multiApt presents a simple and powerful strategy for improving the aptamer binding affinity toward Salmonella. Simultaneously, integrating this dual-functional HCR-multiApt with the CRISPR/Cas12a system significantly enhances the sensitivity by cascade signal amplification in a nucleic acids amplification-free way. Finally, leveraging the versatility of the aptamer, this highly sensitive method can be further extended for application in the detection of other bacteria, food safety monitoring, or clinical diagnostics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Sistemas CRISPR-Cas , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , ADN/química , Hibridación de Ácido Nucleico , Salmonella/genética , Técnicas Biosensibles/métodos
6.
Foods ; 12(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37893744

RESUMEN

Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed multivalent aptamer for the sensitive detection of Salmonella. In this system, aptamers are precisely controlled and assembled on a DNA nanotriangle structure to fabricate a multivalent aptamer (NTri-Multi-Apt) with enhanced binding affinity and specificity toward Salmonella. The NTri-Multi-Apt was designed to carry many streptavidin-HRPs for colorimetric read-outs and a large load of Sybr green I in the dsDNA scaffold for the output of a fluorescent signal. Therefore, combined with the magnetic separation of aptamers and the prefabricated NTri-Multi-Apt, the dual-mode approach achieved simple and sensitive detection, with LODs of 316 and 60 CFU/mL for colorimetric and fluorescent detection, respectively. Notably, the fluorescent mode provided a self-calibrated and fivefold-improved sensitivity over colorimetric detection. Systematic results also revealed that the proposed dual-mode method exhibited high specificity and applicability for milk, egg white, and chicken meat samples, serving as a promising tool for real bacterial sample testing. As a result, the innovative dual-mode detection method showed new insights for the detection of other pathogens.

7.
Food Chem ; 417: 135861, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906946

RESUMEN

Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.


Asunto(s)
Microbioma Gastrointestinal , Leche , Animales , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Leche/metabolismo , Productos Lácteos
8.
J Agric Food Chem ; 71(10): 4408-4416, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36866978

RESUMEN

Highly luminescent nanospheres have been demonstrated in enhancing the sensitivity of lateral flow immunoassay (LFIA) due to their loading numerous luminescent dyes. However, the photoluminescence intensities of existing luminescent nanospheres are limited due to the aggregation-caused quenching effect. Herein, highly luminescent aggregation-induced emission luminogens embedded nanospheres (AIENPs) with red emission were introduced as signal amplification probes of LFIA for quantitative detection of zearalenone (ZEN). Optical properties of red-emitted AIENPs were compared with time-resolved dye-embedded nanoparticles (TRNPs). Results showed that red-emitted AIENPs have stronger photoluminescence intensity on the nitrocellulose membrane and superior environmental tolerance. Additionally, we benchmarked the performance of AIENP-LFIA against TRNP-LFIA using the same set of antibodies, materials, and strip readers. Results showed that AIENP-LFIA exhibits good dynamic linearity with the ZEN concentration from 0.195 to 6.25 ng/mL, with half competitive inhibitory concentration (IC50) and detection of limit (LOD) at 0.78 and 0.11 ng/mL, respectively. The IC50 and LOD are 2.07- and 2.36-fold lower than those of TRNP-LFIA. Encouragingly, the precision, accuracy, specificity, practicality, and reliability of this AIENP-LFIA for ZEN quantitation were further characterized. The results verified that the AIENP-LFIA has good practicability for the rapid, sensitive, specific, and accurate quantitative detection of ZEN in corn samples.


Asunto(s)
Nanopartículas del Metal , Nanosferas , Zearalenona , Zearalenona/análisis , Luminiscencia , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química
9.
J Agric Food Chem ; 70(51): 16382-16389, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36512680

RESUMEN

Salmonella severely threatens global human health and causes financial burden. The ability to sensitively detect Salmonella in food samples is highly valuable but remains a challenge. Herein, a sensitive detection method for Salmonella was developed by coupling immunomagnetic separation with the CRISPR-Cas12a system and the tetrahedral DNA nanostructure-mediated hyperbranched hybridization chain reaction (TDN-hHCR). In the detection system, the target Salmonella was immunomagnetically separated and labeled with bio-barcode DNA-modified gold nanoparticles (AuNPs), which could transfer and magnify the signal of a bacterial cell into numerous bio-barcode DNA molecules. Afterward, the bio-barcode DNA can trigger the trans-cleavage activity of CRISPR-Cas12a to inhibit the process of the TDN-hHCR to generate a fluorescence readout. Due to the high immunomagnetic separation efficiency and the effective signal amplification of CRISPR-Cas12a and the TDN-hHCR, Salmonella as low as 8 CFU/mL could be easily detected. Meanwhile, this has been applied for practical use and showed the capability to detect 17 and 25 CFU/mL in spiked milk and egg white, respectively, indicating its potential application in real samples.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoestructuras , Humanos , Oro , Sistemas CRISPR-Cas , Salmonella/genética
10.
Analyst ; 146(17): 5271-5279, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34355716

RESUMEN

The ability to visually detect low numbers of Salmonella in food samples is highly valuable but remains a challenge. Here we present a novel platform for ultrasensitive and visual detection of Salmonella Typhimurium by integrating the bio-barcode immunoassay (BCA), recombinase polymerase amplification (RPA), and CRISPR-Cas12a cleavage in a single reaction system (termed as BCA-RPA-Cas12a). In the system, the target bacteria were separated by immunomagnetic nanoparticles and labeled with numerous barcode AuNPs, which carry abundant bio-barcode DNA molecules to amplify the signal. Afterwards, the bio-barcode DNA molecules were amplified by RPA and subsequently triggered the cleavage activity of Cas12a to generate the fluorescence signal. Due to this triplex signal amplification, the BCA-RPA-Cas12a system can selectively detect Salmonella Typhimurium at the single-digit level with the naked eye under blue light within 60 min. Meanwhile, this novel platform was successfully applied to detect Salmonella Typhimurium in spiked milk samples with a similar sensitivity and satisfactory recovery, indicating its potential application in real samples. Furthermore, in virtue of the versatility of the antibody in the stage of BCA, the BCA-RPA-Cas12a system can be extended to further application in other bacteria detection and food safety monitoring.


Asunto(s)
Nanopartículas del Metal , Recombinasas , Sistemas CRISPR-Cas , Oro , Inmunoensayo , Técnicas de Amplificación de Ácido Nucleico , Recombinasas/genética , Salmonella typhimurium/genética
11.
Anal Bioanal Chem ; 413(17): 4417-4426, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34013400

RESUMEN

Simple and visual quantitative detection of foodborne pathogens can effectively reduce the outbreaks of foodborne diseases. Herein, we developed a simple and sensitive quantum dot (QD)-based paper device for visual and quantitative detection of Escherichia coli (E. coli) O157:H7 based on immunomagnetic separation and nanoparticle dissolution-triggered signal amplification. In this study, E. coli O157:H7 was magnetically separated and labeled with silver nanoparticles (AgNPs), and the AgNP labels can be converted into millions of Ag ions, which subsequently quench the fluorescence of QDs in the paper strip, which along with the readout can be visualized and quantified by the change in length of fluorescent quenched band. Owing to the high capture efficiency and effective signal amplification, as low as 500 cfu mL-1 of E. coli O157:H7 could be easily detected by naked eyes. Furthermore, this novel platform was successfully applied to detect E. coli O157:H7 in spiked milk samples with good accuracy, indicating its potential in the detection of foodborne pathogens in real samples.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Colorantes Fluorescentes/análisis , Separación Inmunomagnética/instrumentación , Puntos Cuánticos/análisis , Tiras Reactivas/análisis , Animales , Infecciones por Escherichia coli/microbiología , Contaminación de Alimentos/análisis , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Nanopartículas del Metal/química , Leche/microbiología , Papel , Plata/química
12.
Sci Rep ; 10(1): 15479, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968153

RESUMEN

The gram-negative, aerobic, rod-shaped bacterium Aeromonas hydrophila, the causative agent of motile aeromonad septicaemia, has attracted increasing attention due to its high pathogenicity. Here, we constructed the complete genome sequence of a virulent strain, A. hydrophila HX-3 isolated from Pseudosciaena crocea and performed comparative genomics to investigate its virulence factors and quorum sensing features in comparison with those of other Aeromonas isolates. HX-3 has a circular chromosome of 4,941,513 bp with a 61.0% G + C content encoding 4483 genes, including 4318 protein-coding genes, and 31 rRNA, 127 tRNA and 7 ncRNA operons. Seventy interspersed repeat and 153 tandem repeat sequences, 7 transposons, 8 clustered regularly interspaced short palindromic repeats, and 39 genomic islands were predicted in the A. hydrophila HX-3 genome. Phylogeny and pan-genome were also analyzed herein to confirm the evolutionary relationships on the basis of comparisons with other fully sequenced Aeromonas genomes. In addition, the assembled HX-3 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database (76.03%), Gene Ontology database (18.13%), and Kyoto Encyclopedia of Genes and Genome pathway database (59.68%). Two-component regulatory systems in the HX-3 genome and virulence factors profiles through comparative analysis were predicted, providing insights into pathogenicity. A large number of genes related to the AHL-type 1 (ahyI, ahyR), LuxS-type 2 (luxS, pfs, metEHK, litR, luxOQU) and QseBC-type 3 (qseB, qseC) autoinducer systems were also identified. As a result of the expression of the ahyI gene in Escherichia coli BL21 (DE3), combined UPLC-MS/MS profiling led to the identification of several new N-acyl-homoserine lactone compounds synthesized by AhyI. This genomic analysis determined the comprehensive QS systems of A. hydrophila, which might provide novel information regarding the mechanisms of virulence signatures correlated with QS.


Asunto(s)
Aeromonas hydrophila/genética , Genoma Bacteriano/genética , Aeromonas hydrophila/patogenicidad , Aeromonas hydrophila/ultraestructura , Animales , Cromosomas Bacterianos/genética , Clonación Molecular , Enfermedades de los Peces/microbiología , Genes Bacterianos/genética , Genómica , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Filogenia , Percepción de Quorum/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma/métodos
13.
J Agric Food Chem ; 68(8): 2516-2527, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32050067

RESUMEN

In the Gram-negative bacterium Aeromonas hydrophila, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) influences pathogenicity, protein secretion, and motility. However, the catalytic mechanism of AHL biosynthesis and the structural basis and substrate specificity for AhyI members remain unclear. In this study, we cloned the ahyI gene from the isolate A. hydrophila HX-3, and the overexpressed AhyI protein was confirmed to produce six types of AHLs by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, contrasting with previous reports that AhyI only produces N-butanoyl-l-homoserine lactone (C4-HSL) and N-hexanoyl-l-homoserine lactone (C6-HSL). The results of an in vitro biosynthetic assay showed that purified AhyI can catalyze the formation of C4-HSL using S-adenosyl-l-methionine (SAM) and butyryl-acyl carrier protein (ACP) as substrates and indicated that the fatty acyl substrate used in AhyI-mediated AHL synthesis is derived from acyl-ACP rather than acyl-CoA. The kinetic data of AhyI using butyryl-ACP as an acyl substrate indicated that the catalytic efficiency of the A. hydrophila HX-3 AhyI enzyme is within an order of magnitude compared to other LuxI homologues. In this study, for the first time, the tertiary structural modeling results of AhyI and those of molecular docking and structural and functional analyses showed the importance of several crucial residues, as well as the secondary structure with respect to acylation. A Phe125-Phe152 clamp grasps the terminal methyl group to assist in stabilizing the long acyl chains in a putative binding pocket. The stacking interactions within a strong hydrophobic environment, a hydrogen-bonding network, and a ß bulge presumably stabilize the ACP acyl chain for the attack of the SAM α-amine toward the thioester carbon, offering a relatively reasonable explanation for how AhyI can synthesize AHLs with diverse acyl-chain lengths. Moreover, Trp34 participates in forming the binding pocket for C4-ACP and becomes ordered upon SAM binding, providing a good basis for catalysis. The novel finding that AhyI can produce both short- and long-chain AHLs enhances current knowledge regarding the variety of AHLs produced by this enzyme. These structural data are expected to serve as a molecular rationale for AHL synthesis by AhyI.


Asunto(s)
Aeromonas hydrophila/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Aeromonas hydrophila/química , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Proteínas Bacterianas/genética , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , Espectrometría de Masas en Tándem
14.
J Texture Stud ; 50(5): 400-409, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31063585

RESUMEN

The gelling and structural properties of microbial transglutaminase (MTGase) and pectin modified fish gelatin were compared to investigate their performances on altering fish gelatin properties. Our results showed that within a certain concentration, both MTGase and pectin had positive effects on the gelation point, melting point, gel strength, textural, and swelling properties of fish gelatin. Particularly, low pectin content (0.5%, w/v) could give fish gelatin gels the highest values of gel strength, melting temperature, and hardness. Meantime, flow behavior results showed that both MTGase and pectin could increase fish gelatin viscosity without changing its fluid characteristic, but the latter gave fish gelatin higher viscosity. Both MTGase and pectin could increase the lightness of fish gelatin gels but decreases its transparency. More importantly, fluorescence and UV absorbance spectra, particle size distribution, and confocal microscopy results indicated that MTGase and pectin could change the structure of fish gelatin with the formation of large aggregates. Compared with MTGae modified fish gelatin, pectin could endow fish gelatin had similar gel strength, thermal and textural properties to pig skin gelatin.


Asunto(s)
Peces , Gelatina/química , Gelatina/metabolismo , Geles/química , Pectinas/química , Transglutaminasas/metabolismo , Animales , Color , Manipulación de Alimentos/métodos , Dureza , Tamaño de la Partícula , Piel/química , Porcinos , Temperatura , Resistencia a la Tracción , Viscosidad
15.
Anal Chem ; 89(22): 12145-12151, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29053256

RESUMEN

A serious impetus always exists to exploit new methods to enrich the prospect of nanomaterials. Here, we report electrochemical conversion (ECC) of magnetic nanoparticles (MNPs) to electroactive Prussian blue (PB) analogues accompanied by three interfacial effects and its exploitation for novel label self-sacrificial biosensing of avian influenza virus H5N1. The ECC method involves a high-potential step to create strong acidic condition by splitting H2O to release Fe3+ from the MNPs, and then a low-potential step leading to the reduction of coexisting K3Fe(CN)6 and Fe3+ to K4Fe(CN)6 and Fe2+, respectively, which react to form PB analogues. Unlike conventional solid/liquid electrochemical interfaces that need a supply of reactants by transportation from bulk solution and require additional template to generate porosity, the proposed method introduces MNPs on the electrode surface and makes them natural nanotemplates and nanoconfined sources of reactants. Therefore, the method presents interesting surface templating, generation-confinement, and refreshing effects/modes, which benefit the produced PB with higher porosity and electrochemical activity, and 3 orders of magnitude lower requirement for reactant concentration compared with conventional methods. Based on the ECC methods, a sandwich immunosensor is designed for rapid detection of avian influenza virus H5N1 using MNPs as self-sacrificial labels to produce PB for signal amplification. Taking full advantages of the high abundance of Fe in MNPs and three surface effects, the ECC method endows the biosensing technology with high sensitivity and a limit of detection down to 0.0022 hemagglutination units, which is better than those of most reported analogues. The ECC method may lead to a new direction for application of nanomaterials and new electrochemistry modes.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ferrocianuros/química , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Nanopartículas de Magnetita/química
16.
Analyst ; 141(3): 1136-43, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26699696

RESUMEN

Acrylamide (AA), a neurotoxin and a potential carcinogen, has been found in various thermally processed foods such as potato chips, biscuits, and coffee. Simple, cost-effective, and sensitive methods for the rapid detection of AA are needed to ensure food safety. Herein, a novel colorimetric method was proposed for the visual detection of AA based on a nucleophile-initiated thiol-ene Michael addition reaction. Gold nanoparticles (AuNPs) were aggregated by glutathione (GSH) because of a ligand-replacement, accompanied by a color change from red to purple. In the presence of AA, after the thiol-ene Michael addition reaction between GSH and AA with the catalysis of a nucleophile, the sulfhydryl group of GSH was consumed by AA, which hindered the subsequent ligand-replacement and the aggregation of AuNPs. Therefore, the concentration of AA could be determined by the visible color change caused by dispersion/aggregation of AuNPs. This new method showed high sensitivity with a linear range from 0.1 µmol L(-1) to 80 µmol L(-1) and a detection limit of 28.6 nmol L(-1), and especially revealed better selectivity than the fluorescence sensing method reported previously. Moreover, this new method was used to detect AA in potato chips with a satisfactory result in comparison with the standard methods based on chromatography, which indicated that the colorimetric method can be expanded for the rapid detection of AA in thermally processed foods.


Asunto(s)
Acrilamida/análisis , Acrilamida/química , Colorimetría/métodos , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Solanum tuberosum , Compuestos de Sulfhidrilo/química , Colorimetría/economía , Análisis Costo-Beneficio , Análisis de los Alimentos/economía , Manipulación de Alimentos , Glutatión/química , Oro/química , Concentración de Iones de Hidrógeno , Límite de Detección , Nanopartículas del Metal/química , Factores de Tiempo
17.
Appl Opt ; 44(15): 3006-12, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15929291

RESUMEN

Series of amorphous SiO2, ZrO2 and HfO2 films were prepared by electron-beam evaporation at various oxygen pressures such that the packing density varied from 0.6 to 0.82. Transmittance spectra were evaluated with respect to thickness and refractive index by application of analytical formulas to the interference extrema and by dielectric modeling. The thickness of the films ranged from 150 to 1500 nm. The coefficients of Cauchy and Sellmeier dispersion curves were determined as a function of the packing density. The mass density of the compact amorphous grains was estimated by an effective-medium theory and a general refractivity formula. It is similar to those of the crystalline materials. We used the optical data to design multilayer coatings for laser applications in a broad spectral range, including the UV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...