Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(7): e17739, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483820

RESUMEN

Commercial koji has been increasingly used in Chinese Baijiu brewing; however, there are only few studies comparing different koji and their relationship with key components of Chinese Baijiu such as ethyl acetate, ethyl lactate, and higher alcohols. Here, we studied six commercially available koji and showed that the microbial communities in the individual koji varied in composition, with Rhizopus, Aspergillus, and Bacillus primarily associated with starch hydrolysis and Saccharomyces mainly associated with alcohol production. In the brewing processes using the six koji, Saccharomyces was undoubtedly the most abundant fungus and Weissella, Bacillus, and Acinetobacter were the predominant bacterial groups. The levels of ethyl acetate, ethyl lactate, and higher alcohols in all brewing processes using the koji exhibited rapid increase in the early stages of fermentation, which stabilized in the later stages, followed by substantial increase after distillation. The results of metagenomic and redundancy analyses of samples taken during the brewing processes indicated that Saccharomyces from the koji was closely related to the production of ethyl acetate, ethyl lactate, and higher alcohols. This study provides a basis for the quality improvement and application of commercial koji.

2.
J Hazard Mater ; 446: 130730, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36630876

RESUMEN

Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm). We show that simple ball milling exposed the active Fe0 sites, while mechanochemical sulfidation diminished Fe0 sites and meanwhile increased S2- sites. Mechanochemical sulfidation with [S/Fe]dosed increased from 0 to 0.20 promoted the particle reactivity most for TCE dechlorination (∼14-fold), followed by PCE and 1,1-DCE while it diminished the reactivity for trans-DCE (∼0.4-fold), cis-DCE (∼0.02-fold) and VC (∼0.002-fold) compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC and trans-DCE dechlorination positively correlated with surface Fe0 content, suggesting their dechlorination was mainly mediated by Fe0 site or reactive atomic hydrogen. The kSA of TCE dechlorination positively correlated with surface S2- content and the dechlorination mainly occurred on S2- sites via direct electron transfer. Increased sulfidation favored direct electron transfer mechanism. The kSA of PCE and 1,1-DCE was not dependent on either parameter and their dechlorination was equally achieved through either mechanism.

3.
Chemosphere ; 310: 136819, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36241117

RESUMEN

While it has been recognized that sulfidation can effectively improve the reactivity of microscale zero valent iron (mZVI), there is limited understanding of nitrobenzene (ArNO2) removal by sulfidated mZVI. To understand the reduction capacity and pathway of ArNO2 by sulfidated mZVI, ball-milling sulfidated mZVI (S-mZVIbm) with different S/Fe molar ratios (0-0.2) was used to conduct this experiment. The results showed that sulfidation could efficiently enhance ArNO2 removal under iron-limited and iron excess conditions, which was attributed to the presence of FeSx sites that could provide higher Fe(0) utilization efficiency and stronger passivation resisting for S-mZVIbm. The optimum ArNO2 reduction could be obtained by S-mZVIbm with S/Fe molar ratio at 0.1, which could completely transform ArNO2 to aniline (ArNH2) with a rate constant of 4.36 × 10-2 min-1 during 120-min reaction. FeSx phase could act as electron transfer sites for ArNO2 reduction and it could still be reserved in S-mZVIbm after reduction reaction. The product distribution indicated that sulfidation did not change the types of reduction products, while the removal of ArNO2 by S-mZVIbm was a step-by-step reduction progress along with the adsorption of ArNH2. In addition, a faster reduction of ArNO2 in groundwater/soil system further demonstrated the feasibility of S-mZVIbm in the real field remediation.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Hierro , Contaminantes Químicos del Agua/análisis , Nitrobencenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...