RESUMEN
Emulsion gels mimic the rheological properties of solid and semi-solid fats, offering a viable solution to replace conventional fats in low-fat food formulations. In this study, gel emulsions stabilized with stigmasterol (ST) and polyglycerol polyricinoleate (PGPR) complexes were prepared. Initially, we examined the effect of the ST/PGPR complex on the mechanism of gel emulsion stabilization. Our findings revealed that the gel emulsion formulated with 3% PGPR and ST exhibited a robust structure, effectively stabilizing the entire system and ensuring uniform distribution, and increasing ST concentration led to greater stability of the gel emulsion system. Stability assessments demonstrated that gel emulsions containing 3% PGPR and varying ST concentrations exhibited remarkable thermal stability and effectively delayed oil oxidation. These results underscore the high stability of gel emulsions stabilized with the ST/PGPR complex, highlighting their potential as a margarine substitute.
RESUMEN
Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed of solvents, and DESs can serve as a more effective alternative to these solvents. The combination of DESs and Pickering emulsions can improve the applications of green chemistry by reducing the use of harmful chemicals and enhancing sustainability. In this study, a Pickering emulsion consisting of a DES (menthol:octanoic acid = 1:1) in water was prepared and stabilized using starch nanoparticles (SNPs). The emulsion was thoroughly characterized using various techniques, including optical microscopy, transmission microscopy, laser particle size analysis, and rheological measurements. The results demonstrated that the DES-in-water Pickering emulsion stabilized by the SNPs had excellent stability and retained its structural integrity for more than 200 days at room temperature (20 °C). This prolonged stability has significant implications for many applications, particularly in the field of storage and transportation. This Pickering emulsion based on DESs and SNPs is sustainable and stable, and it has great potential to improve green chemistry practices in various fields.
RESUMEN
This study investigated the pharmacological and pathological effects of aqueous mulberry leaf extract on type 1 diabetes mellitus mice induced with an intraperitoneal injection of streptozotocin (STZ). Diabetic mice were randomized into six groups: control (normal group), model, metformin-treated mice, and high-dose, medium-dose, and low-dose mulberry. The mulberry-treated mice were divided into high-, medium-, and low-dose groups based on the various doses of aqueous mulberry leaf extract during gavage. The efficacy of the six-week intervention was evaluated by measuring levels of fasting plasma glucose, alkaline phosphatase, alanine aminotransferase, aspartate transaminase, blood urea nitrogen, gamma-glutamyl transferase, glucose, high-density lipoprotein cholesterol, lactate dehydrogenase, and low-density lipoprotein cholesterol and recording body weight. Results revealed that mulberry leaf extract exhibited an ideal hypoglycemic effect, and the high-dose group was the most affected. Histology analysis, glycogen staining and apoptosis detection were used to study the extract's effects on the liver, kidney, and pancreatic cells of diabetic mice, enabling the assessment of its effectiveness and complications on a clinical and theoretical basis. It was shown that a certain concentration of aqueous mulberry leaf extract repaired the islet cells of type 1 diabetes mellitus mice, promoting normal insulin secretion. Herein, it was confirmed that mulberry leaf could be used to develop new hypoglycemic drugs or functional health food with broad applicability.
RESUMEN
Taking the extraction yield of Bletilla striata polysaccharide (BSP) as the index and taking the type of deep eutectic solvents (DESs), extraction time, extraction temperature, DES water content, and solid-liquid ratio as the investigation factors, single-factor and Box-Behnken response surface tests were carried out to optimize the extraction process of BSP. Thus, the antioxidant activity of BSP on DPPH radicals, ABTS radicals and ferric reducing antioxidant power were determined. The results showed that the most suitable deep eutectic solvent was DES-2, namely choline chloride-urea. The optimal extraction conditions for BSP were an extraction time of 47 min, extraction temperature of 78 °C, water content of 35%, and solid-liquid ratio of 1:25. Under this optimized condition, the extraction yield of BSP was able to reach (558.90 ± 8.83) mg/g, and recycling studies indicated the good cycle stability of the DES. Antioxidant results showed that BSP had superior antioxidant activity and had a dose-response relationship with drug concentration. Compared with Bletilla striata polysaccharide obtained via conventional hot water extraction (BSP-W), the extraction yield of BSP obtained through this method (BSP-2) increased by 36.77%, the scavenging activity of DPPH radicals increased by 24.99%, the scavenging activity of ABTS radicals increased by 41.16%, and the ferric reducing antioxidant power increased by 49.19%. Therefore, DESs as new green reagents and BSP extracted with DESs not only had a high yield but also had strong antioxidant activity.
Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Antioxidantes/farmacología , Antioxidantes/química , Solventes/química , Agua/química , Polisacáridos/farmacologíaRESUMEN
This work used the natural ingredient stigmasterol as an oleogelator to explore the effect of concentration on the properties of organogels. Organogels based on rapeseed oil were investigated using various techniques (oil binding capacity, rheology, polarized light microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy) to better understand their physical and microscopic properties. Results showed that stigmasterol was an efficient and thermoreversible oleogelator, capable of structuring rapeseed oil at a stigmasterol concentration as low as 2% with a gelation temperature of 5 °C. The oil binding capacity values of organogels increased to 99.74% as the concentration of stigmasterol was increased to 6%. The rheological properties revealed that organogels prepared with stigmasterol were a pseudoplastic fluid with non-covalent physical crosslinking, and the G' of the organogels did not change with the frequency of scanning increased, showing the characteristics of strong gel. The microscopic properties and Fourier transform infrared spectroscopy showed that stigmasterol formed rod-like crystals through the self-assembly of intermolecular hydrogen bonds, fixing rapeseed oil in its three-dimensional structure to form organogels. Therefore, stigmasterol can be considered as a good organogelator. It is expected to be widely used in food, medicine, and other biological-related fields.
RESUMEN
BACKGROUND: Although the morbidity and mortality rates associated with idiopathic pulmonary fibrosis (IPF) are high, there is still lack of powerful and precise therapeutic options for IPF. OBJECT: Through in vitro model, this study sought to determine whether binding of acetylated CCAAT/enhancer binding protein ß (C/EBPß) to alpha-smooth muscle actin (α-SMA) promoter could affect the activity of the latter as well as assess if it is essential for epithelial-to-mesenchymal transition (EMT) and extracellular matrix deposition in IPF. METHODS: The expression of EMT and C/EBPß in A549 cells treated with transforming growth factor-beta (TGF-ß) as pulmonary fibrotic model was detected by western blotting and qPCR. Collagen-I expression using ELISA was performed. The luciferase activity was used to examine the activity of C/EBPß. Knockdown of C/EBPß was performed by siRNA. We also investigated the effect of deacetylation of C/EBPß on EMT using sirtuin 1 (SIRT1). The binding ability of C/EBPß with α-SMA promoter was affirmed via chromatin immunoprecipitation (ChIP) and electrophoresis mobility shift assay (EMSA). The relationship between α-SMA and acetylated C/EBPß was determined with co-immunoprecipitation (Co-IP). SiRNA-mediated knockdown of C/EBPß in A549 cells attenuated TGF-ß1-induced myofibroblast differentiation and ECM deposition. The extent of association between acetylated C/EBPß and α-SMA promoter was dynamically monitored. RESULTS: It was confirmed that deacetylation of C/EBPß in A549 cells successfully ameliorated TGF-ß1-induced EMT, as shown by reduction in α-SMA expression and excessive collagen-I accumulation. CONCLUSION: The EMT and fibrotic effect of TGF-ß1 is dependent on acetylated C/EBPß-mediated regulation of α-SMA gene activity. Thus, C/EBPß acetylation may play a central role in pulmonary fibrosis.
Asunto(s)
Actinas/metabolismo , Células Epiteliales Alveolares/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Factor de Crecimiento Transformador beta , Células A549 , Acetilación , Actinas/genética , Antígenos CD/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Cadherinas/metabolismo , Colágeno Tipo I/metabolismo , Transición Epitelial-Mesenquimal , Humanos , ARN Interferente Pequeño/genéticaRESUMEN
Arsenic (As) contamination in subsoil and groundwater is a big problem, especially in many South-East Asian countries. As a staple crop growing under flooded condition in these areas, rice (Oryza sativa L.) becomes a big threat to human health through the food chain since As is highly accumulated in grains. Thus, reducing As accumulation in rice through molecular breeding and identification of rice varieties with low As content are the pressing issues. However, the current understanding on the molecular mechanism of As stress response is still limited for rice. In this study, we performed a comprehensive search for the As-responsive small RNAs (sRNAs) of rice. Briefly, 4,762 and 18,152 sRNAs were identified to be highly activated under As stress in roots and shoots respectively, while 14,603 and 8,308 sRNAs were intensively repressed by As treatment in roots and shoots, respectively. A number of the As-responsive sRNAs found their loci on tRNAs, rRNAs or long non-coding RNAs (lncRNAs). Interestingly, these loci preferentially distributed on the 5' halves of the tRNA, rRNA or lncRNA precursors. Among the above-identified As-responsive sRNAs, 252 Argonaute 1 (AGO1)-enriched sRNAs were extracted for target identification, resulting in 200 pairs of sRNA-protein-coding target interactions. Many targets are functionally involved in the development, stress response, reproduction, or lipid metabolism. Additionally, 56 lncRNAs were discovered to be targeted by nine AGO1-enriched sRNAs, indicating the potential involvement of these lncRNAs in As signaling. Taken together, our results could expand the understanding on the non-coding RNA-mediated As stress response in rice.
Asunto(s)
Arsénico/toxicidad , Oryza/genética , Oryza/fisiología , ARN no Traducido/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Sitios Genéticos , MicroARNs/genética , MicroARNs/metabolismo , Sistemas de Lectura Abierta , Oryza/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN no Traducido/metabolismo , Estrés Fisiológico/efectos de los fármacosRESUMEN
The involvement of the long non-coding RNAs (lncRNAs) in small RNA (sRNA)-related pathways remains elusive. Taking advantage of the public sRNA sequencing data, we searched for RNA-dependent RNA polymerase 2 (RDR2)- and Dicer-like 3 (DCL3)-dependent sRNAs generated from the lncRNAs of Arabidopsis thaliana. First, 55,162 sRNAs were identified to be RDR2- and DCL3-dependent. These sRNAs were then mapped onto the lncRNAs. As a result, a total of 26,643 sRNAs found their loci on 3,834 lncRNAs, and 29,388 sRNAs found their loci on 4,174 reverse complementary (RC) sequences of the lncRNAs. To support the formation of the double-stranded precursors for sRNA generation, double-stranded RNA sequencing (dsRNA-seq) reads were mapped onto the sense and antisense strands of the lncRNAs with RDR2- and DCL3-dependent sRNA loci. As a result, 1,075 regions longer than 100 nt were identified to be covered by dsRNA-seq reads on 390 sense strands of the lncRNAs, and 1,352 regions were identified on 544 RC strands. Besides, 2,238 out of 3,211 dsRNA-seq read-covered sRNA loci were supported by degradome sequencing data on the sense strands of the lncRNAs. Interestingly, dozens of dsRNA-seq read-covered regions with AGO4-associated sRNA loci showed site-specific chromatin modification patterns. Thus, some of the lncRNAs were integrated into the RDR2- and DCL3-dependent sRNA biogenesis pathway. Moreover, our results indicated that the site-specific chromatin modifications mediated by the AGO4-associated sRNAs might play a regulatory role on the transcription activity of the lncRNA genes.
Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , Transcriptoma/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismoRESUMEN
The biological roles of small RNAs (sRNAs) in metabolic processes are emerging. However, a systemic study is needed to investigate the wide-spread involvement of the sRNAs in plant metabolism. By using the metabolism-related transcripts retrieved from the public database Plant Metabolic Network, and the publicly available sRNA high-throughput sequencing data, large-scale target identification was performed for microRNAs (miRNAs) and Argonaute 1 (AGO1)-enriched sRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Based on the publicly available degradome sequencing data, 200 miRNA/sRNA-target pairs involving 19 miRNAs, 111 AGO1-enriched sRNAs and 58 target transcripts in Arabidopsis, and 151 pairs involving 62 miRNAs, 33 AGO1-enriched sRNAs and 69 target transcripts in rice were identified. After considering protein-protein interactions for the above identified target genes, a total of 251 pairs involving 21 miRNAs, 120 AGO1-enriched sRNAs and 75 target transcripts exist within the regulatory network of Arabidopsis, and 168 pairs involving 64 miRNAs, 38 AGO1-enriched sRNAs and 80 target transcripts exist in rice. Based on GO (Gene Ontology) term enrichment analysis, the targets within the networks of both plants are enriched in "metabolic process" and "catalytic activity", pointing to the high relevance of the established networks to metabolism. Several functionally conserved subnetworks were identified between the two plant species. Our study provides a basis for studies on metabolism-related sRNAs in plants.
Asunto(s)
Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Plantas/genética , Plantas/metabolismo , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Arabidopsis/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Anotación de Secuencia Molecular , Oryza/genética , Mapeo de Interacción de ProteínasRESUMEN
Protein kinase C (PKC) is an important mediator in the cardioprotection of ischemic preconditioning and has been shown to translocate to mitochondria upon activation. However, little is known about the cellular signaling underlying the translocation of PKC isoforms to mitochondria and its age-dependence. The present study aimed to explore whether adenosine-induced translocation of PKCε to mitochondria is mediated by caveolin-3 and/or adenosine A2B receptor/PI3 kinase mediated signaling, and whether the mitochondrial targeting of PKCε is age-related. Immunofluorescence imaging of isolated mitochondria from cardiomyocytes and H9c2 cells showed that while adenosine-induced increase in mitochondrial PKCε was inhibited by adenosine A1 receptor blocker, pretreatment with adenosine A2B receptor specific inhibitor MRS 1754 or PI3K inhibitor Wortmannin did not significantly reduce adenosine-mediated increase in mitochondrial PKCε. Interestingly, adenosine-induced increase in mitochondrial translocation of PKCε was significantly blocked by suppressing caveolin-3 expression with specific siRNA. When compared to that in young adult rat hearts, the level of mitochondrial PKCε in middle-aged rat hearts was significantly lower at the basal condition and in response to adenosine treatment, along with largely decreased mitochondrial HSP90 and TOM70 protein expression. We demonstrate that adenosine-induced translocation of PKCε to mitochondria is mediated by a caveolin-3-dependent mechanism and this process is age-related, possibly in part, through regulation of HSP90 and TOM70 expression. These results point out a novel mechanism in regulating PKC function in mitochondria.
Asunto(s)
Envejecimiento , Caveolina 3/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Receptor de Adenosina A2B/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Adenosina/metabolismo , Animales , Regulación de la Expresión Génica , Masculino , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Miocardio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Plants have evolved exquisite molecular mechanisms to adapt to diverse abiotic stresses. MicroRNAs play an important role in stress response in plants. However, whether the other small RNAs (sRNAs) possess stress-related roles remains elusive. In this study, thousands of sRNAs responsive to cold, drought and salt stresses were identified in rice seedlings and panicles by using high-throughput sequencing data. These sRNAs were classified into 12 categories, including "Panicle_Cold_Down", "Panicle_Cold_Up", "Panicle_Drought_Down", "Panicle_Drought_Up", "Panicle_Salt_Down", "Panicle_Salt_Up", "Seedling_Cold_Down", "Seedling_Cold_Up", "Seedling_Drought_Down", "Seedling_Drought_Up", "Seedling_Salt_Down" and "Seedling_Salt_Up". The stress-responsive sRNAs enriched in Argonaute 1 were extracted for target prediction and degradome sequencing data-based validation, which enabled network construction. Within certain subnetworks, some target genes were further supported by microarray data. Literature mining indicated that certain targets were potentially involved in stress response. These results demonstrate that the established networks are biologically meaningful. We discovered that in some cases, one sRNA sequence could be assigned to two or more categories. Moreover, within certain target-centered subnetworks, one transcript was regulated by several stress-responsive sRNAs assigned to different categories. It implies that these subnetworks are potentially implicated in stress signal crosstalk. Together, our results could advance the current understanding of the biological role of plant sRNAs in stress signaling.
Asunto(s)
Oryza/genética , ARN de Planta/genética , Estrés Fisiológico/genética , Frío , Sequías , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/fisiología , Salinidad , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ARNRESUMEN
MicroRNA (miRNA) acts as a critical regulator of gene expression at post-transcriptional and occasionally transcriptional levels in plants. Identification of reliable miRNA genes, monitoring the procedures of transcription, processing and maturation of the miRNAs, quantification of the accumulation levels of the miRNAs in specific biological samples, and validation of miRNA-target interactions become the basis for thoroughly understanding of the miRNA-mediated regulatory networks and the underlying mechanisms. Great progresses have been achieved for sequencing technology. Based on the high degree of sequencing depth and coverage, the high-throughput sequencing (HTS, also called next-generation sequencing) technology provides unprecedentedly efficient way for genome-wide or transcriptome-wide studies. In this review, we will introduce several HTS platform-based methods useful for plant miRNA research, including RNA-seq (RNA sequencing), RNA-PET-seq (paired end tag sequencing of RNAs), sRNA-seq (small RNA sequencing), dsRNA-seq (double-stranded RNA sequencing), ssRNA-seq (single-stranded RNA sequencing) and degradome-seq (degradome sequencing). In particular, we will provide some special cases to illustrate the novel use of HTS methods for investigation of the processing modes of the miRNA precursors, identification of the RNA editing sites on miRNA precursors, mature miRNAs and target transcripts, re-examination of the current miRNA registries, and discovery of novel miRNA species and novel miRNA-target interactions. Summarily, we opinioned that integrative use of the above mentioned HTS methods could make the studies on miRNAs more efficient.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/metabolismo , Plantas/metabolismo , ARN de Planta/metabolismo , MicroARNs/genética , Plantas/genética , ARN de Planta/genética , Análisis de Secuencia de ARN/métodosRESUMEN
Recent research has linked the non-coding intronic regions of plant genes to the production of small RNAs (sRNAs). Certain introns, called 'mirtrons' and 'sirtrons', could serve as the single-stranded RNA precursors for the generation of microRNA and small interfering RNA, respectively. However, whether the intronic regions could serve as the template for double-stranded RNA synthesis and then for sRNA biogenesis through an RDR (RNA-dependent RNA polymerase)-dependent pathway remains unclear. In this study, a genome-wide search was made for the RDR-dependent sRNA loci within the intronic regions of the Arabidopsis genes. Hundreds of intronic regions encoding three or more RDR-dependent sRNAs were found to be covered by dsRNA-seq (double-stranded RNA sequencing) reads, indicating that the intron-derived sRNAs were indeed generated from long double-stranded RNA precursors. More interestingly, phase-distributed sRNAs were discovered on some of the dsRNA-seq read-covered intronic regions, and those sRNAs were largely 24 nt in length. Based on these results, the opinion is put forward that the intronic regions might serve as the genomic origins for the RDR-dependent sRNAs. This opinion might add a novel layer to the current biogenesis model of the intron-derived sRNAs.
Asunto(s)
Arabidopsis/genética , Intrones/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Secuencia de Bases , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , ARN Bicatenario/genética , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADNRESUMEN
Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on lignocellulose enzymatic digestion after NaOH or H(2)SO(4) pretreatment. Characterization of the monosaccharide compositions in the KOH-extractable and non-KOH-extractable hemicelluloses indicated that arabinose substitution degree of xylan is the key factor that positively affects biomass saccharification. The xylose/arabinose ratio after individual enzyme digestion revealed that the arabinose in xylan is partially associated with cellulose in the amorphous regions, which negatively affects cellulose crystallinity for high biomass digestibility. The results provide insights into the mechanism of lignocellulose enzymatic digestion upon pretreatment, and also suggest a goal for the genetic modification of hemicelluloses towards the bioenergy crop breeding of Miscanthus and grasses.
Asunto(s)
Arabinosa/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , Xilanos/metabolismo , Biomasa , Pared Celular/metabolismo , Hidrólisis , Hidróxido de Sodio , Ácidos SulfúricosRESUMEN
BACKGROUND: Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. RESULTS: A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI) and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. CONCLUSIONS: Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.
RESUMEN
By using npt-gene as assistant selection-marker, treating Japonica rice Zhonghua 9 [ZH9 (CK)] and transferred lysozyme gene rice (the donor rice is Japonica rice Zhonghua 9) [ZH9(R)] with antibiotics, we built a system of quickly testing transgenic rice offspring. Detached leaves of ZH9(R) and ZH9(CK) were treated by Kanamycin (0, 400, 450, 500, 550, 600 and 700 mg/L) and G418 (0, 40, 60, 80, 100, 150 and 200 mg/L) with different concentrations. The result show effect of Kanamycin is not evident and G418 is the best antibiotics to test transgenic rice with npt- gene. The data showed that 80 mg/L G418 (treating 4 d) was optimal to test transgenic rice. Further study was done with seeds, young embryos and seedlings by G418 testing: the alive seeds were cultured in the culture dishes which filled with a series of G418 solution with different concentration of 0, 100, 150, 200, 250, 300 and 350 mg/L; in the tissue culture room, the germinating embryos were inoculated in the culture medium (1/2 MS+0.5 mg/L 6-BA+1.5% sucrose) which contains G418 with 0, 150, 200, 250 and 300 mg/L concentration; the aseptic seedlings were inoculated in the the same culture medium (1/2 MS+0.5 mg/L 6-BA+1.5% sucrose) which contains G418 with 0, 100, 150, 200 and 250 mg/L concentration. The conclusions indicated that 300 mg/L (treating 7 d) was the critical concentration to test seeds of transgenic rice; 200 mg/L (treating 10 d) was the critical concentration to test young embryo of transgenic rice; 150 mg/L (treating 12 d) was the critical concentration to test seedlings of transgenic rice. Two primers were designed based on npt- and lysozyme gene sequences. PCR technology confirmed the above detection system. The preliminary results showed npt-was tightly linked with lysozyme gene. Above confirmed critical concentrations were applied to test detached leaves, seeds, young embryos and seedlings of transferred generations. The effect was very obvious. It is convenient, intuitionistic, and exact way that aparting the positive plants from the mixture of transgenic positive and negative plants with G418.