Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Oncol ; 40(9): 276, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612479

RESUMEN

Comprehensive analysis of the expression and probable function of LSM2 in Live hepatocellular carcinoma (LIHC), and validation via in vitro experiments. Integrated use of database resources to examine the differential expression, survival prognosis, clinicopathological characteristics, and functional enrichment of LSM2 in LIHC. The expression level of LSM2 in LIHC tissues and adjacent tissues was proven via immunohistochemical staining. The biological function of LSM2 in LIHC was detected by cell proliferation, cell cloning, cell scratch, cell migration, and invasion experiments in vitro. TIMER 2.0 and GEPIA indicated that LSM2 was highly expressed in cancers and was strongly associated with survival rates in LIHC, cholangiocarcinoma, breast cancer, and renal clear cell carcinoma. LSM2 was highly expressed in LIHC, which was closely associated to the clinicopathological characteristics of patients, and the overall survival rate and disease-free survival rate of patients with high expression of LSM2 were lower than those with low expression of LSM2. Functional enrichment results revealed that LSM2 was involved to ribosome formation, DNA replication, cell cycle, metabolic processes, JAK-STAT signaling pathways, and FoxO signaling pathways. Knockdown of LSM2 inhibited the proliferation, migration, and invasion of LIHC cells in vitro experiments. LSM2 was highly expressed in LIHC and was related to a poor prognosis. Knockdown of LSM2 could inhibit the proliferation, migration, and invasion of LIHC cells.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Neoplasias Renales , Neoplasias Hepáticas , Humanos , Conductos Biliares Intrahepáticos , Carcinoma Hepatocelular/genética , Biología Computacional , Neoplasias Hepáticas/genética
2.
CNS Neurosci Ther ; 29(12): 3952-3966, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37353944

RESUMEN

AIMS: Chromosome 9 open reading frame 72 (C9orf72) is one of the most dazzling molecules in neurodegenerative diseases, albeit that its role in Parkinson's disease (PD) remains unknown. This article aimed to explore the potential mechanism of C9orf72 involved in the pathogenesis of PD. METHODS: The expression and phosphorylation levels of C9orf72 were examined by Western blotting, RT-PCR, and immunoprecipitation using PD models. Multiple bioinformatics software was used to predict the potential phosphorylation sites of C9orf72 by Cdk5, followed by verification of whether Cdk5-inhibitor ROSCOVITINE could reverse the degradation of C9orf72 in PD. By constructing the sh-C9orf72-knockdown adenovirus and overexpressing the FLAG-C9orf72 plasmid, the effects of C9orf72 knockdown and overexpression, respectively, were determined. A short peptide termed Myr-C9orf72 was used to verify whether interfering with Cdk5 phosphorylation at the Ser9 site of the C9orf72 protein could alleviate autophagy disorder, neuronal death, and movement disorder in PD models. RESULTS: The expression level of the C9orf72 protein was significantly reduced, albeit the mRNA expression was not changed in the PD models. Moreover, the phosphorylation level was enhanced, and its reduction was mainly degraded by the ubiquitin-proteasome pathway. The key nervous system kinase Cdk5 directly phosphorylated the S9 site of the C9orf72 protein, which promoted the degradation of the C9orf72 protein. The knockdown of C9orf72 aggravated autophagy dysfunction and increased neuronal loss and motor dysfunction in substantia nigra neurons of PD mice. The overexpression of C9orf72 alleviated autophagy dysfunction in PD neurons. Specifically, interference with Cdk5 phosphorylation at the S9 site of C9orf72 alleviated autophagy dysfunction, neuronal death, and motor dysfunction mediated by C9orf72 protein degradation during PD. CONCLUSIONS: Cumulatively, our findings illustrate the importance of the role of C9orf72 in the regulation of neuronal death during PD progression via the Cdk5-dependent degradation.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Proteína C9orf72 , Muerte Celular/fisiología , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/farmacología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Fosforilación
3.
Int J Biol Macromol ; 241: 124323, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37023875

RESUMEN

Equilibrative nucleoside transporter 3 (ENT3) belongs to the solute carrier family 29. Nucleoside transporters encoded by ENT3 play an important role in the uptake of nucleosides, nucleobases, and their nucleoside analogs, as well as participate in and regulate several physiological activities. However, no study has so far reported the role of ENT3 in hepatocellular carcinoma (HCC). We employed bioinformatics to analyze the expression, prognosis, and mechanism of ENT3 in HCC, as well as verified the same through biological experiments including cell proliferation, cell migration and invasion, and cell cycle and apoptosis, along with the detection of the AKT/mTOR protein expression in the pathway by Western blotting. ENT3 was widely and highly expressed in pan-cancer and upregulated in HCC. The upregulated ENT3 was related to the poor prognosis and clinical features in HCC patients. ENT3 knockdown inhibited cell proliferation, migration, and invasion and promoted cell apoptosis. ENT3 knockdown reduced the p-AKT and p-mTOR protein phosphorylation level, inhibited p-p70S6K1 and increased the p-4EBP1-the downstream effector of the AKT/mTOR pathway-protein phosphorylation level. Our study findings demonstrated that the expression of ENT3 was upregulated in HCC, which represents a poor prognosis. Thus, ENT3 promotes the progression of HCC through the AKT/mTOR signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Movimiento Celular
4.
Oxid Med Cell Longev ; 2022: 1837278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589679

RESUMEN

A naphthoquinone molecule known as plumbagin (PL), which has a wide range of pharmacological properties including antitumor, antioxidation, anti-inflammation, and neuroprotective effects, is extracted from the roots of the medicinal herb Plumbago zeylanica L. Plumbagin has been studied for its potential to treat Parkinson's disease (PD). However, its effectiveness and mechanism are still unknown. This study intends to evaluate plumbagin's effectiveness against PD in vitro and in vivo. Plumbagin partially repaired the loss of dopaminergic neurons in the nigral substantia nigra and the resulting behavioural impairment caused by MPTP or MPTP/probenecid in mice. Furthermore, plumbagin treatment significantly inhibited the TLR/NF-κB pathways. It reduced the TNF-α, IL-6, and IL-1ß mRNA expression in PD mice induced by MPTP or MPTP/probenecid, which was consistent with the findings in the inflammatory model of BV2 cells induced by MPP+ or LPS. In addition, plumbagin treatment enhanced the microtubule-associated protein 1 light chain 3 beta (LC3) LC3-II/LC3-I levels while decreasing the p-mTOR and p62 protein accumulation in PD mice induced by MPTP or MPTP/probenecid, which was similar to the results obtained from the experiments in SH-SY5Y and PC12 cells induced by MPP+. Consequently, our results support the hypothesis that plumbagin, by promoting autophagy and inhibiting the activation of the TLR/NF-κB signaling pathway, is a promising treatment agent for treating Parkinson's disease (PD). However, to confirm plumbagin's anti-PD action more thoroughly, other animal and cell PD models must be used in future studies.


Asunto(s)
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Probenecid/metabolismo , Probenecid/farmacología , Neuroblastoma/metabolismo , Transducción de Señal , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Naftoquinonas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Autofagia , Ratones Endogámicos C57BL , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Modelos Animales de Enfermedad
5.
Exp Biol Med (Maywood) ; 246(15): 1681-1687, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038190

RESUMEN

Mediator is an evolutionarily conserved multi-protein complex that mediates the interaction between different proteins as a basic linker in the transcription mechanism of eukaryotes. It interacts with RNA polymerase II and participates in the process of gene expression. Mediator complex subunit 19 or regulation by oxygen 3, or lung cancer metastasis-related protein 1 is located at the head of the mediator complex; it is a multi-protein co-activator that induces the transcription of RNA polymerase II by DNA transcription factors. It is a tumor-related gene that plays an important role in transcriptional regulation, cell proliferation, and apoptosis and is closely related to the occurrence and development of the cancers of the lung, bladder, skin, etc. Here, we used the structure of mediator complex subunit 19 to review its role in tumor progression, fat metabolism, drug therapy, as well as the novel coronavirus, which has attracted much attention at present, suggesting that mediator complex subunit 19 has broad application in the occurrence and development of clinical diseases. As a tumor-related gene, the role and mechanism of mediator complex subunit 19 in the regulation of tumor growth could be of great significance for the diagnosis, prognosis, and treatment of mediator complex subunit 19 -related tumors.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Complejo Mediador/fisiología , Neoplasias/patología , Apoptosis/fisiología , COVID-19/metabolismo , COVID-19/virología , Ciclo Celular/fisiología , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética
6.
Front Cell Dev Biol ; 9: 631982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718368

RESUMEN

Hepatoblastoma (HB) is the most common liver tumor in the pediatric population, with typically poor outcomes for advanced-stage or chemotherapy-refractory HB patients. The objective of this study was to identify genes involved in HB pathogenesis via microarray analysis and subsequent experimental validation. We identified 856 differentially expressed genes (DEGs) between HB and normal liver tissue based on two publicly available microarray datasets (GSE131329 and GSE75271) after data merging and batch effect correction. Protein-protein interaction (PPI) analysis and weighted gene co-expression network analysis (WGCNA) were conducted to explore HB-related critical modules and hub genes. Subsequently, Gene Ontology (GO) analysis was used to reveal critical biological functions in the initiation and progression of HB. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that genes involved in cell cycle phase transition and the PI3K/AKT signaling were associated with HB. The intersection of hub genes identified by both PPI and WGCNA analyses revealed five potential candidate genes. Based on receiver operating characteristic (ROC) curve analysis and reports in the literature, we selected CCNA2, CDK1, and CDC20 as key genes of interest to validate experimentally. CCNA2, CDK1, or CDC20 small interfering RNA (siRNA) knockdown inhibited aggressive biological properties of both HepG2 and HuH-6 cell lines in vitro. In conclusion, we identified CCNA2, CDK1, and CDC20 as new potential therapeutic biomarkers for HB, providing novel insights into important and viable targets in future HB treatment.

7.
Virus Res ; 296: 198336, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577860

RESUMEN

Hepatitis C virus (HCV) can cause chronic lifelong infections in humans, resulting in sustained hepatic inflammation, liver cirrhosis, and hepatocellular carcinoma. The clearance of HCV infections is dependent upon effective and coordinated innate and adaptive antiviral immune responses. However, HCV has evolved a range of strategies that enable it to evade or overcome the host immune response, enabling the virus to persist in susceptible hosts through mechanisms that remain to be fully clarified. Herein, we describe a novel mechanism whereby HCV can evade immune surveillance by activating microRNA (miR)-125a. Hepatocytes upregulate miR-125a following HCV infection, and serum from HCV-infected patients similarly exhibits the upregulation of this miRNA. We found that miR-125a is able to target and suppress the expression of two key genes associated with the interferon (IFN) signaling pathway - mitochondrial antiviral signaling (MAVS) and TNF receptor-associated factor 6 (TRAF6). Disrupting the expression of these genes can in turn compromise type I IFN responses to HCV. Together, our data reveal that HCV infection results in the upregulation of miR-125a, which negatively regulates IFN signaling via inhibiting the expression of MAVS and TRAF6, thereby enabling the virus to evade innate antiviral immunity. Targeting this pathway may thus represent an efficient approach to treating HCV and bolstering antiviral immune responses in infected patients.


Asunto(s)
Hepatitis C , Neoplasias Hepáticas , MicroARNs , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antivirales/farmacología , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Humanos , Inmunidad Innata , Interferones , MicroARNs/genética , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
8.
Front Oncol ; 11: 792285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047403

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, the pathogenesis of which remains unclear. Mediator complex subunit 19 (MED19), a subunit of the Mediator complex, is a multi-protein co-activator necessary for DNA transcription factors to induce RNA polymerase II transcription. In the current study, we aimed to study the role of MED19 in HCC and elucidate its mechanism. METHODS: MED19 expression in HCC tissues was determined. The relationship between MED19 and the clinical prognosis was explored. The influence of MED19 on HCC cell viability, migration, invasion, and apoptosis was studied. The expression of AKT/mTOR pathway genes and proteins was detected by qRT-PCR and western blot. The correlation between MED19 and immune infiltration was investigated. RESULTS: MED19 was upregulated in HCC tissues compared with tumor-adjacent tissues, and was associated with a poor prognosis. Furthermore, high MED19 expression was correlated with race, gender, etc. Knockdown of MED19 inhibited cell proliferation, migration, invasion, and promoted apoptosis. Knockdown of MED19 decreased p-AKT and p-mTOR protein expression. Additionally, the downstream effectors of the AKT/mTOR pathway, p70S6K1 and 4EBP1, were affected by MED19. Notably, MED19 expression was positively correlated with the infiltration levels of B cells, CD4+ T cells, CD8+ T cells, macrophages, etc. CONCLUSION: MED19 is significantly upregulated in HCC tissues and cells. MED19 may promote the progression of HCC in vitro and may be related to immune infiltration. Together, our data show that MED19 could be considered as a new possible biomarker as well as a novel therapeutic target for HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...