Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1338781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464967

RESUMEN

Background: Pituitary stalk interruption syndrome (PSIS) is a complex clinical syndrome characterized by varied pituitary hormone deficiencies, leading to severe manifestations across multiple systems. These include lifelong infertility, short stature, mental retardation, and potentially life-threatening pituitary crises if not promptly diagnosed and treated. Despite extensive research, the precise pathogenesis of PSIS remains unclear. Currently, there are two proposed theories regarding the pathogenic mechanisms: the genetic defect theory and the perinatal injury theory. Methods: We systematically searched English databases (PubMed, Web of Science, Embase) and Chinese databases (CNKI, WanFang Med Online, Sinomed) up to February 24, 2023, to summarize studies on gene sequencing in PSIS patients. Enrichment analyses of reported mutated genes were subsequently performed using the Metascape platform. Results: Our study included 37 articles. KEGG enrichment analysis revealed mutated genes were enriched in the Notch signaling pathway, Wnt signaling pathway, and Hedgehog signaling pathway. GO enrichment analysis demonstrated mutated genes were enriched in biological processes such as embryonic development, brain development, axon development and guidance, and development of other organs. Conclusion: Based on our summary and analyses, we propose a new hypothesis: disruptions in normal embryonic development, partially stemming from the genetic background and/or specific gene mutations in individuals, may increase the likelihood of abnormal fetal deliveries, where different degrees of traction during delivery may lead to different levels of pituitary stalk interruption and posterior lobe ectopia. The clinical diversity observed in PSIS patients may result from a combination of genetic background, specific mutations, and variable degrees of traction during delivery.


Asunto(s)
Hipopituitarismo , Enfermedades de la Hipófisis , Humanos , Proteínas Hedgehog , Enfermedades de la Hipófisis/patología , Hipófisis/patología , Hipopituitarismo/genética , Hipopituitarismo/patología , Mutación , Síndrome
2.
Cell Death Dis ; 15(2): 129, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342917

RESUMEN

Neural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells. It is unknown whether Mysm1 plays an important role in NSCs. Here, we found that Mysm1 was expressed in NSCs and its expression was increased with age in mice. Mice with Mysm1 knockdown by crossing Mysm1 floxed mice with Nestin-Cre mice exhibited abnormal brain development with microcephaly. Mysm1 deletion promoted NSC proliferation and apoptosis, resulting in depletion of the stem cell pool. In addition, Mysm1-deficient NSCs skewed toward neurogenesis instead of astrogliogenesis. Mechanistic investigations with RNA sequencing and genome-wide CUT&Tag analysis revealed that Mysm1 epigenetically regulated Id4 transcription by regulating histone modification at the promoter region. After rescuing the expression of Id4, the hyperproliferation and imbalance differentiation of Mysm1-deficient NSCs was reversed. Additionally, knockdown Mysm1 in aged mice could promote NSC proliferation. Collectively, the present study identified a new factor Mysm1 which is essential for NSC homeostasis and Mysm1-Id4 axis may be an ideal target for proper NSC proliferation and differentiation.


Asunto(s)
Células-Madre Neurales , Proteasas Ubiquitina-Específicas , Ratones , Animales , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Endopeptidasas/metabolismo , Transactivadores/metabolismo , Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Proliferación Celular/genética
3.
Sci Adv ; 9(21): eadf3887, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235662

RESUMEN

Developing oral nanomedicines that suppress intestinal inflammation while modulating gut microbiota and brain interactions is essential for effectively treating inflammatory bowel disease. Here, we report an oral polyphenol-armored nanomedicine based on tumor necrosis factor-α (TNF-α)-small interfering RNA and gallic acid-mediated graphene quantum dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tannin acid (CHI/TA) multilayer. Referred to "armor," the CHI/TA multilayer resists the harsh environment of the gastrointestinal tract and adheres to inflamed colon sites in a targeted manner. TA provides antioxidative stress and prebiotic activities that modulate the diverse gut microbiota. Moreover, GAGQD protected TNF-α-siRNA delivery. Unexpectedly, the armored nanomedicine suppressed hyperactive immune responses and modulated bacterial gut microbiota homeostasis in a mouse model of acute colitis. Notably, the armored nanomedicine alleviated anxiety- and depression-like behaviors and cognitive impairment in mice with colitis. This armor strategy sheds light on the effect of oral nanomedicines on bacterial gut microbiome-brain interactions.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Ratones , Animales , Polifenoles/farmacología , Nanomedicina , Factor de Necrosis Tumoral alfa/genética , Colitis/tratamiento farmacológico , Encéfalo/patología , Bacterias , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Cell Signal ; 108: 110721, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230200

RESUMEN

How to efficiently regenerate jawbone defects caused by trauma, jaw osteomyelitis, tumors, or intrinsic genetic diseases is still challenging. Ectoderm-derived jawbone defect has been reported to be regenerated by selectively recruiting cells from its embryonic origin. Therefore, it is important to explore the strategy for promoting ectoderm-derived jaw bone marrow mesenchymal stem cells (JBMMSCs) on the repair of homoblastic jaw bone. Glial cell-derived neurotrophic factor (GDNF) is an important growth factor and is essential in the process of proliferation, migration and differentiation of nerve cells. However, whether GDNF promoting the function of JBMMSCs and the relative mechanism are not clear. Our results showed that activated astrocytes and GDNF were induced in the hippocampus after mandibular jaw defect. In addition, the expression of GDNF in the bone tissue around the injured area was also significantly increased after injury. Data from in vitro experiments demonstrated that GDNF could effectively promote the proliferation and osteogenic differentiation of JBMMSCs. Furthermore, when implanted in the defected jaw bone, JBMMSCs pretreated with GDNF exhibited enhanced repair effect compared with JBMMSCs without treatment. Mechanical studies found that GDNF induced the expression of Nr4a1 in JBMMSCs, activated PI3K/Akt signaling pathway and then enhanced the proliferation and osteogenic differentiation capacities of JBMMSCs. Our studies reveal that JBMMSCs are good candidates for repairing jawbone injury and pretreated with GDNF is an efficient strategy for enhancing bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea , Células Cultivadas
5.
Adv Sci (Weinh) ; : e2204463, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414403

RESUMEN

Major depressive disorder (MDD) is a leading cause of disability worldwide. A comprehensive understanding of the molecular mechanisms of this disorder is critical for the therapy of MDD. In this study, it is observed that deubiquitinase Mysm1 is induced in the brain tissues from patients with major depression and from mice with depressive behaviors. The genetic silencing of astrocytic Mysm1 induced an antidepressant-like effect and alleviated the osteoporosis of depressive mice. Furthermore, it is found that Mysm1 knockdown led to increased ATP production and the activation of p53 and AMP-activated protein kinase (AMPK). Pifithrin α (PFT α) and Compound C, antagonists of p53 and AMPK, respectively, repressed ATP production and reversed the antidepressant effect of Mysm1 knockdown. Moreover, the pharmacological inhibition of astrocytic Mysm1 by aspirin relieved depressive-like behaviors in mice. The study reveals, for the first time, the important function of Mysm1 in the brain, highlighting astrocytic Mysm1 as a potential risk factor for depression and as a valuable target for drug discovery to treat depression.

6.
Stem Cell Res Ther ; 13(1): 341, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883153

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model. METHODS: A murine TBI model was established by injuring C57BL/6 N mice with moderate-controlled cortical impact to evaluate the extent of brain damage and behavioral deficits. Ectoderm-derived FbMSCs were isolated from the frontal bone and their characteristics were assessed using multiple differentiation assays, flow cytometry and microarray analysis. Brain repairment and functional recovery were analyzed at different days post-injury with or without FbMSC application. Behavioral tests were performed to assess learning and memory improvements. RNA sequencing analysis, immunofluorescence staining, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to examine inflammation reaction and neural regeneration. In vitro co-culture analysis and quantification of glutamate transportation were carried out to explore the possible mechanism of neurogenesis and functional recovery promoted by FbMSCs. RESULTS: Ectoderm-derived FbMSCs showed fibroblast like morphology and osteogenic differentiation capacity. FbMSCs were CD105, CD29 positive and CD45, CD31 negative. Different from mesoderm-derived MSCs, FbMSCs expressed the ectoderm-specific transcription factor Tfap2ß. TBI mice showed impaired learning and memory deficits. Microglia and astrocyte activation, as well as neural damage, were significantly increased post-injury. FbMSC application ameliorated the behavioral deficits of TBI mice and promoted neural regeneration. RNA sequencing analysis showed that signal pathways related to inflammation decreased, whereas those related to neural activation increased. Immunofluorescence staining and qRT-PCR data revealed that microglial activation and astrocyte polarization to the A1 phenotype were suppressed by FbMSC application. In addition, FGF1 secreted from FbMSCs enhanced glutamate transportation by astrocytes and alleviated the cytotoxic effect of excessive glutamate on neurons. CONCLUSIONS: Ectoderm-derived FbMSC application significantly alleviated neuroinflammation, brain injury, and excitatory toxicity to neurons, improved cognition and behavioral deficits in TBI mice. Therefore, ectoderm-derived FbMSCs could be ideal therapeutic candidates for TBI which mostly affect cells from the same embryonic origins as FbMSCs.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Células Madre Mesenquimatosas , Animales , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Ectodermo/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Factor 1 de Crecimiento de Fibroblastos/uso terapéutico , Hueso Frontal/metabolismo , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ácido Glutámico/uso terapéutico , Inflamación/metabolismo , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Osteogénesis
7.
J Biol Chem ; 298(7): 102116, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35691339

RESUMEN

Osteoporosis affects approximately 200 million people and severely affects quality of life, but the exact pathological mechanisms behind this disease remain unclear. Various miRNAs have been shown to play a predominant role in the regulation of osteoclast formation. In this study, we explored the role of miR-134-5p in osteoclastogenesis both in vivo and in vitro. We constructed an ovariectomized (OVX) mouse model and performed microarray analysis using bone tissue from OVX mice and their control counterparts. Quantitative RT-PCR data from bone tissue and bone marrow macrophages (BMMs) confirmed the decreased expression of miR-134-5p in OVX mice observed in microarray analysis. In addition, a decrease in miR-134-5p was also observed during induced osteoclastogenesis of BMMs collected from C57BL/6N mice. Through transfection with miR-134-5p agomirs and antagomirs, we found that miR-134-5p knockdown significantly accelerated osteoclast formation and cell proliferation and inhibited apoptosis. Furthermore, a luciferase reporter assay showed that miR-134-5p directly targets the integrin surface receptor gene Itgb1. Cotransfection with Itgb1 siRNA reversed the effect of the miR-134-5p antagomir in promoting osteoclastogenesis. Moreover, the abundance levels of MAPK pathway proteins phosphorylated-p38 (p-p38) and phosphorylated-ERK (p-ERK) were significantly increased after transfection with the miR-134-5p antagomir but decreased after transfection with the miR-134-5p agomir or Itgb1 siRNA, which indicated a potential relationship between the miR-134-5p/Itgb1 axis and the MAPK pathway. Collectively, these results revealed that miR-134-5p inhibits osteoclast differentiation of BMMs both in vivo and in vitro and that the miR-134-5p/Itgb1/MAPK pathway might be a potential target for osteoporosis therapy.


Asunto(s)
MicroARNs/metabolismo , Osteoporosis , Animales , Antagomirs , Diferenciación Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Osteoporosis/genética , Calidad de Vida , ARN Interferente Pequeño/farmacología
8.
Stem Cells Int ; 2021: 7435605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326879

RESUMEN

OBJECTIVE: Accumulating evidence indicates that microRNAs (miRNAs) play crucial roles in osteogenic differentiation. However, the associated mechanisms remain elusive. This paper is aimed at exploring the role of miR-129-5p in regulating bone marrow mesenchymal stem cell (BMSC) differentiation and bone regeneration in vivo and in vitro. METHODS: BMSCs were transduced by miR-129-5p mimic, miR-129-5p inhibitor, and negative control lentivirus. The ability of BMSC differentiation to osteoblast was tested by alkaline phosphatase (ALP) and alizarin red staining (ARS). The expression of osteogenic genes (Runx2, Bmp2, and OCN) was examined via quantitative RT-PCR and western blot. A mouse model of calvaria defect was investigated by Micro-CT, immunohistochemistry, and histological examination. The luciferase reporter gene assay was performed to confirm the binding between Dkk3 and miR-129-5p. For the transfection experiments, lipofectamine 3000 was used to transfect pcDNA-Dkk3 into BMSCs to overexpress Dkk3. Coimmunoprecipitation and immunofluorescent localization assay were included for exploring the role of Dkk3 and ß-catenin. RESULTS: miR-129-5p was induced in BMSCs and MSC cell line C3H10T1/2 cells under osteogenic medium. Overexpression of miR-129-5p significantly promoted osteogenic differentiation of BMSCs in vitro. Moreover, BMSCs transduced with miR-129-5p mimic exhibited better bone regeneration compared with BMSCs transduced with control counterpart in vivo. Luciferase and western blot data showed that Dickkopf3 (Dkk3) is a target gene of miR-129-5p and the expression of Dkk3 was inhibited in BMSCs transduced with miR-129-5p mimic but enhanced in BMSCs transduced with miR-129-5p inhibitor. In addition, Dkk3 interacted with ß-catenin directly. CONCLUSIONS: miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration, and miR-129-5p/Dkk3 axis may be new potential targets for the treatment of bone defect and bone loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA