Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6601, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097570

RESUMEN

Understanding protein function is pivotal in comprehending the intricate mechanisms that underlie many crucial biological activities, with far-reaching implications in the fields of medicine, biotechnology, and drug development. However, more than 200 million proteins remain uncharacterized, and computational efforts heavily rely on protein structural information to predict annotations of varying quality. Here, we present a method that utilizes statistics-informed graph networks to predict protein functions solely from its sequence. Our method inherently characterizes evolutionary signatures, allowing for a quantitative assessment of the significance of residues that carry out specific functions. PhiGnet not only demonstrates superior performance compared to alternative approaches but also narrows the sequence-function gap, even in the absence of structural information. Our findings indicate that applying deep learning to evolutionary data can highlight functional sites at the residue level, providing valuable support for interpreting both existing properties and new functionalities of proteins in research and biomedicine.


Asunto(s)
Biología Computacional , Proteínas , Proteínas/metabolismo , Proteínas/química , Biología Computacional/métodos , Aprendizaje Profundo , Bases de Datos de Proteínas , Algoritmos , Humanos
2.
J Inorg Biochem ; 232: 111808, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35421767

RESUMEN

Eight new diorganotin(IV) complexes (1a-2d), namely {[X-C6H4(O)C=N-N=C(Me)COO]R2Sn(CH3OH)}n (1a, 2a), {[X-C6H4(O)C=N-N=C(Me)COO]R2Sn(CH3OH)}2 (1b, 1c, 1d, 2b), and {[X-C6H4(O)C=N-N=C(Me)COO]R2Sn}2 (2c, 2d) (X = H-, p-Me-, p-OH-, p-NO2-; R = o-Cl-C6H4CH2- or o-Me-C6H4CH2-), have been synthesized by microwave "one-pot" reaction with arylformylhydrazine, pyruvic acid, and the corresponding R2SnCl2. All the complexes have been characterized by FT-IR (Fourier transform infrared spectroscopy), multinuclear NMR (1H, 13C, and 119Sn nuclear magnetic resonance spectroscopies), HRMS (high-resolution mass spectroscopy) and single-crystal X-ray structural analysis. The antiproliferative activity of all complexes was tested against the cancer cell lines NCI-H460, MCF-7 and HepG2. The diorganotin complex 1c has been shown to be more potent antitumor agents against HepG2 than other complexes and cisplatin. Flow cytometry analysis observation demonstrated that complex 1c mediated cell apoptosis of HepG2 cells and arrested cell cycle in the S phase. The single cell gel electrophoreses assay results show that the 1c induce DNA damage. The DNA binding activities of the 1c were studied by UV-visible absorption spectrometry, fluorescence competitive, circular dichroism measurements, and molecular docking, results shown 1c can be well embedded in the groove and cleave DNA.


Asunto(s)
Antineoplásicos , Compuestos Orgánicos de Estaño , Antineoplásicos/química , Antineoplásicos/farmacología , ADN/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Compuestos Orgánicos de Estaño/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
ACS Appl Mater Interfaces ; 10(15): 12626-12638, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29582987

RESUMEN

In this study, the CeF3-doped porous carbon nanofibers (PCNFs), prepared via electroblown spinning technique and carbonization process, are used as sulfur immobilizers in cathodes for lithium-sulfur (Li-S) batteries for the first time. The cathode composed of CeF3-doped PCNFs, carbon nanotubes (CNTs), and S is successfully prepared through the ball-milling and heating method. The formed porous structure in the PCNFs and CNTs facilitates the construction of highly electrically conductive pathways and effectively alleviates volume changes, which can maintain the stability of the cathode structure and make them in close contact between the electrodes. Meanwhile, the intermediate polysulfide dissolved and lost in the electrolyte can also be suppressed because of the hierarchical porous carbon nanofibers and CeF3. The Li-S battery using the cathode can display excellent electrochemical properties and stable capacity retention, presenting an initial discharge capacity of 1395.0 mAh g-1 and retaining a capacity of 901.2 mAh g-1 after 500 cycles at 0.5C. During the rate capability tests of battery, the discharge capacity of Li-S battery with the electrode slowed down from the discharge capacity of 1284.6 mAh g-1 at 0.5C to 1038.6 mAh g-1 at 1C and 819.3 mAh g-1 at 2C, respectively. It is noteworthy that the battery can still endow an outstanding discharge capacity of 1269.73 mAh g-1 with a high retention of 99.2% when the current density returns to 0.5C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...