RESUMEN
At present, there are few reports on the micron-sized catalysts for overall water splitting. In this study, phosphating method were used to construct the self-supporting catalyst (V doped Ni microspheres coated by NiMoO4/Ni12P5) with microspherical structure, providing a short path and a stable structure to guarantee quick electron transfer and excellent catalytic performance. Hence, oxygen evolution reaction (OER) only needs 254 mV to reach a current density of 50 mA cm-2 in 1.0 mol/L KOH, after 114 h without attenuation. The catalyst can achieve a current densitiy of 10 mA cm-2 with a voltage of only 158 mV for hydrogen evolution reaction (HER). When micron scale V-Ni@NiMoO4/Ni12P5 is used as both anode and cathode for overall water splitting, the device can operate at a current density of 10 mA cm-2 for more than 200 h of good stability. Its superior catalytic performance can be attributed to the construction of micron size and phosphating. DFT calculations indicate that the introduction of P better activates the adsorbed *OH and H2O*, reduces reaction the energy barrier, and improves the catalytic activity.
RESUMEN
The discovery of earth-abundant electrocatalysts to replace platinum and iridium for overall water splitting is a crucial step in reducing the cost of green hydrogen production. Transition metal phosphides have drawn wide attention due to their non-toxicity, good chemical stability, low cost, and stable catalytic activity in alkaline electrolytes. We report a three-dimensional flower-like structure composed of core-shell nanoneedles as catalysts, in which CeO2 is introduced on the surface of nickel cobalt bimetallic phosphide through electrodeposition. And X-ray photoelectron spectroscopy testing and DFT calculations show electron coupling and transfer between CeO2 and CoP3, thereby modulating the electronic structure of the catalyst surface and reducing the adsorption energy of H atoms during the catalytic process, resulting in enhanced catalytic activity. In 1 M KOH, it exhibits a low overpotential of 109 and 296 mV to achieve the current density of 50 mA cm-2 for HER and OER, respectively. When used as both cathode and anode as a bifunctional catalyst, a voltage of only 1.77 V is required to achieve a current density of 50 mA cm-2, demonstrating great industrial potential.