Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(21): 38060-38076, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258379

RESUMEN

In this study, a 1550 nm coherent high-spectral-resolution lidar (CHSRL) is developed to measure the optical properties of aerosols and atmospheric wind profiles in the atmospheric boundary layer. To determine the optical properties, a coherent frequency discriminator based on the fast Fourier transform is designed in the CHSRL to separate the Mie and the Rayleigh-Brillouin backscatter spectra to fulfill the needs of high-spectral measurements. The atmospheric wind velocity is retrieved using the simultaneously measured Doppler shift. This non-optical frequency discriminator is a feasible and low-cost solution compared to a narrow-bandwidth optical filter, such as a Fabry-Perot interferometer or an atomic filter. However, shot, amplifier spontaneous emission, and detector noise interfere with the Rayleigh-Brillouin spectrum. Therefore, a spectrum correction algorithm is proposed to recover the interfered Rayleigh-Brillouin spectrum, and the measurement results of the spectral line agree well with those modeled with Tenti S6 at different central frequencies. Finally, field observations for comparison are conducted with the co-located CHSRL, Raman lidar, and coherent Doppler wind lidar. The comparison results indicate that the correlation coefficient of the aerosol backscatter coefficient is 0.84. The correlation coefficient and standard deviation of wind velocity are 0.98 and 0.13 m · s-1, respectively.

2.
Opt Express ; 23(26): 33870-92, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26832047

RESUMEN

Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...