RESUMEN
mRNA-based therapeutics increasingly demonstrate significant potential in treating various diseases, including infectious diseases, cancers, and genetic disorders. Effective delivery systems are crucial for advancing mRNA therapeutics. Lipid nanoparticles (LNPs) serve as an excellent carrier, widely validated for their safety and tolerability in commercially available mRNA vaccines. Standard LNPs typically consist of four components: ionizable lipids (ILs), helper lipids, cholesterol, and polyethylene glycol-lipids (PEG-lipids), with the structural design of ILs gradually becoming a focal point of research interest. The chemical structures and formulations of the other components also significantly affect the delivery efficiency, targeting specificity, and stability of LNPs. The complex formulations of LNPs may hinder the clinical transformation of mRNA therapeutics and have raised widespread concerns about their safety. This review aims to summarize the progress of LNPs-based mRNA therapeutics in clinical trials, focusing on adverse effects that occurred during these trials. It also discusses representative innovations in LNP components, highlighting challenges and potential ways in this research field. We firmly believe this review will promote further improvements and designs of LNP compositions to optimize mRNA therapeutics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures.
Asunto(s)
Lípidos , Nanopartículas , ARN Mensajero , Humanos , Nanopartículas/química , Lípidos/química , Animales , LiposomasRESUMEN
AC484 was developed by designing compounds based on the PTPN2 protein structure. AC484 enhances antitumor immunity through multiple mechanisms: increasing tumor sensitivity to IFN-γ, improving T-cell functions, stimulating tumor microenvironment inflammation, expanding TCR diversity, and preventing T-cell exhaustion. Interestingly, the efficacy of AC484 was also mediated by CD8+ and NK cells.
RESUMEN
The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.
Asunto(s)
Señales de Clasificación de Proteína , SARS-CoV-2 , Vacunas de ARNm , Animales , Ratones , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Ratones Endogámicos BALB C , ARN Mensajero/genética , Vacunas contra la COVID-19/inmunología , Femenino , Humanos , Antígenos Virales/inmunología , Antígenos Virales/genética , Antígenos Virales/química , Anticuerpos Antivirales/inmunología , Inmunidad Humoral , Vacunas Sintéticas/inmunología , Inmunidad CelularRESUMEN
Efficient translation mediated by the 5' untranslated region (5' UTR) is essential for the robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1Ψ) modification of mRNA can impact the translation efficiency of the 5' UTR. We discovered that the optimal 5' UTR for m1Ψ-modified mRNA (m1Ψ-5' UTR) differs significantly from its unmodified counterpart, highlighting the need for a specialized tool for designing m1Ψ-5' UTRs rather than directly utilizing high-expression endogenous gene 5' UTRs. In response, we developed a novel machine learning-based tool, Smart5UTR, which employs a deep generative model to identify superior m1Ψ-5' UTRs in silico. The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent in existing models. As a result, Smart5UTR can successfully design superior 5' UTRs, greatly benefiting mRNA vaccine development. Notably, Smart5UTR-designed superior 5' UTRs significantly enhanced antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 5' UTRs.
RESUMEN
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Tigeciclina/farmacología , Tigeciclina/uso terapéutico , Minociclina/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , AguaRESUMEN
Herbal medicines have gained recognition among physicians and patients due to their lower adverse effects compared to modern medicines. They are extensively used to treat various diseases, including cancer, cardiovascular issues, chronic inflammation, microbial contamination, diabetes, obesity, and hepatic disorders, among others. Unfortunately, the clinical application of herbal medicines is limited by their low solubility and inadequate bioavailability. Utilizing herbal medicines in the form of nanocrystals (herbal medicine nanocrystals) has shown potential in enhancing solubility and bioavailability by reducing the particle size, increasing the specific surface area, and modifying the absorption mechanisms. Multiple studies have demonstrated that these nanocrystals significantly improve drug efficacy by reducing toxicity and increasing bioavailability. This review comprehensively examines therapeutic approaches based on herbal medicine nanocrystals. It covers the preparation principles, key factors influencing nucleation and polymorphism control, applications, and limitations. The review underscores the importance of optimizing delivery systems for successful herbal medicine nanocrystal therapeutics. Furthermore, it discusses the main challenges and opportunities in developing herbal medicine nanocrystals for the purpose of treating conditions such as cancer, inflammatory diseases, cardiovascular disorders, mental and nervous diseases, and antimicrobial infections. In conclusion, we have deliberated regarding the hurdles and forthcoming outlook in the realm of nanotoxicity, in vivo kinetics, herbal ingredients as stabilizers of nanocrystals, and the potential for surmounting drug resistance through the utilization of nanocrystalline formulations in herbal medicine. We anticipate that this review will offer innovative insights into the development of herbal medicine nanocrystals as a promising and novel therapeutic strategy.
Asunto(s)
Nanopartículas , Plantas Medicinales , Humanos , Medicina de Hierbas , Disponibilidad Biológica , Extractos VegetalesRESUMEN
The extraordinary advantages associated with mRNA vaccines, including their high efficiency, relatively low severity of side effects, and ease of manufacture, have enabled them to be a promising immunotherapy approach against various infectious diseases and cancers. Nevertheless, most mRNA delivery carriers have many disadvantages, such as high toxicity, poor biocompatibility, and low efficiency in vivo, which have hindered the widespread use of mRNA vaccines. To further characterize and solve these problems and develop a new type of safe and efficient mRNA delivery carrier, a negatively charged SA@DOTAP-mRNA nanovaccine was prepared in this study by coating DOTAP-mRNA with the natural anionic polymer sodium alginate (SA). Intriguingly, the transfection efficiency of SA@DOTAP-mRNA was significantly higher than that of DOTAP-mRNA, which was not due to the increase in cellular uptake but was associated with changes in the endocytosis pathway and the strong lysosome escape ability of SA@DOTAP-mRNA. In addition, we found that SA significantly increased the expression of LUC-mRNA in mice and achieved certain spleen targeting. Finally, we confirmed that SA@DOTAP-mRNA had a stronger antigen-presenting ability in E. G7-OVA tumor-bearing mice, dramatically inducing the proliferation of OVA-specific CLTs and ameliorating the antitumor effect. Therefore, we firmly believe that the coating strategy applied to cationic liposome/mRNA complexes is of potential research value in the field of mRNA delivery and has promising clinical application prospects.
RESUMEN
Most of the nanomedicines can reduce the side effects of anti-tumor chemical drugs but do not have good enough therapeutic efficacy, largely due to the sustained drug release profile. It might be a promising alternative strategy to develop a cascade-responsive nanoplatform against tumor with the burst release of chemotherapeutics based on the highly efficient tumor cell targeting delivery. In this work, we constructed innovative nanoparticles (PMP/WPH-NPs) consisting of two functional polymers. PMP contained the MMP-2 enzyme sensitive linker and disulfide bond, which could respond to the tumor-overexpressing enzyme MMP-2 and high-level glutathione. While WPH promoted tumor penetration and acid-responsive drug release by modifying cellular penetrating peptides and polymerizing L-histidine. PMP/WPH-NPs exhibited outstanding features including longer blood circulation time, promoted tumor-specific accumulation, enhanced tumor penetration and efficient escape from lysosomes. Subsequently, the model drug paclitaxel (PTX), widely used in the tumor chemotherapy, was encapsulated into PMP/WPH-NPs via an emulsion solvent evaporation method. Within a short period of time, PTX-PMP/WPH-NP in simulated tumor cellular microenvironment could release 8 times more PTX than that in the physiological environment, demonstrating a good potential in tumor cell-specific burst drug release. In addition, PTX-PMP/WPH-NPs exhibited stronger anti-tumor activity than PTX in vitro and in vivo, which also had good biocompatibility according to the hemolysis assay and H&E staining. In summary, our work has succeeded in designing an original polymeric nanoplatform for programmed burst drug release based on the tailored tumor targeting delivery system. This new approach would facilitate the clinical translation of more anti-tumor nanomedicines. STATEMENT OF SIGNIFICANCE: Biomaterials responsive to the tumor-specific stimulus has conventionally used in the targeted-delivery of anti-tumor drugs. However, the levels of common stimulus are not uniformly distributed and not high enough to effectively trigger drug release. In an effort to achieve a better specific drug release and promote the chemotherapeutic efficacy, we constructed a cascade responsive nanoplatform with tumor cell-specific drug burst release profile. The tailored biomaterial could overcome the bio-barriers in vivo and succeeded in the programmed burst drug release based on the tumor cell-specific delivery of chemotherapeutics.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Metaloproteinasa 2 de la Matriz , Preparaciones Farmacéuticas , Antineoplásicos/uso terapéutico , Paclitaxel , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Polímeros/química , Microambiente TumoralRESUMEN
There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.
RESUMEN
It is urgent to develop more effective mRNA vaccines against the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants owing to the immune escape. Here, we constructed a novel mRNA delivery system [IC8/Mn lipid nanoparticles (IC8/Mn LNPs)]with high immunogenicity, via introducing a stimulator of interferon genes (STING) agonist [manganese (Mn)] based on a newly synthesized ionizable lipid (IC8). It was found that Mn can not only promote maturation of antigen-presenting cells via activating STING pathway but also improve mRNA expression by facilitating lysosomal escape for the first time. Subsequently, IC8/Mn LNPs loaded with mRNA encoding the Spike protein of SARS-CoV-2 Delta or Omicron variant (IC8/Mn@D or IC8/Mn@O) were prepared. Both mRNA vaccines induced substantial specific immunoglobulin G responses against Delta or Omicron. IC8/Mn@D displayed strong pseudovirus neutralization ability, T helper 1-biased immune responses, and good safety. It can be concluded that IC8/Mn LNPs have great potential for developing Mn-coordinated mRNA vaccines with robust immunogenicity and good safety.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Manganeso , Inmunoglobulina G , ARN Mensajero/genética , InmunidadRESUMEN
SARS-CoV-2 variants are now still challenging all the approved vaccines, including mRNA vaccines. There is an urgent need to develop new generation mRNA vaccines with more powerful efficacy and better safety against SARS-CoV-2 variants. In this study, a new set of ionizable lipids named 4N4T are constructed and applied to form novel lipid nanoparticles called 4N4T-LNPs. Leading 4N4T-LNPs exhibit much higher mRNA translation efficiency than the approved SM-102-LNPs. To test the effectiveness of the novel delivery system, the DS mRNA encoding the full-length S protein of the SARS-CoV-2 variant is synthesized and loaded in 4N4T-LNPs. The obtained 4N4T-DS mRNA vaccines successfully trigger robust and durable humoral immune responses against SARS-CoV-2 and its variants including Delta and Omicron. Importantly, the novel vaccines have higher RBD-specific IgG titers and neutralizing antibody titers than SM-102-based DS mRNA vaccine. Besides, for the first time, the types of mRNA vaccine-induced neutralizing antibodies are found to be influenced by the chemical structure of ionizable lipids. 4N4T-DS mRNA vaccines also induce strong Th1-skewed T cell responses and have good safety. This work provides a novel vehicle for mRNA delivery that is more effective than the approved LNPs and shows its application in vaccines against SARS-CoV-2 variants.
RESUMEN
The therapeutic use of bacteriophages (phages) provides great promise for treating multidrug-resistant (MDR) bacterial infections. However, an incomplete understanding of the interactions between phages and bacteria has negatively impacted the application of phage therapy. Here, we explored engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) by introducing Type I anti-CRISPR (AcrIF1, AcrIF2, and AcrIF3) genes into the P. aeruginosa bacteriophage DMS3/DMS3m to render the potential for blocking P. aeruginosa replication and infection. In order to achieve effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo, the inhibitory concentration for EATPs was 1 × 108 PFU/mL with a multiplicity of infection value of 0.2. In addition, the EATPs significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection. Collectively, these findings provide evidence that engineered phages may be an alternative, viable approach by which to treat patients with an intractable bacterial infection, especially an infection by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy. IMPORTANCE Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic Gram-negative bacterium that causes severe infection in immune-weakened individuals, especially patients with cystic fibrosis, burn wounds, cancer, or chronic obstructive pulmonary disease (COPD). Treating P. aeruginosa infection with conventional antibiotics is difficult due to its intrinsic multidrug resistance. Engineered bacteriophage therapeutics, acting as highly viable alternative treatments of multidrug-resistant (MDR) bacterial infections, have great potential to break through the evolutionary constraints of bacteriophages to create next-generation antimicrobials. Here, we found that engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) display effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo. EATPs also significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection, which may provide novel insight toward developing bacteriophages to treat patients with intractable bacterial infections, especially infections by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy.
Asunto(s)
Bacteriófagos , Terapia de Fagos , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana MúltipleRESUMEN
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Asunto(s)
COVID-19 , Infecciones por Pseudomonas , Animales , Farmacorresistencia Microbiana , Humanos , Mamíferos/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Tecnología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacologíaRESUMEN
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists' desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Asunto(s)
COVID-19 , COVID-19/genética , COVID-19/terapia , Humanos , Pandemias , Proteínas , ARN Mensajero/genéticaRESUMEN
Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in the cytoplasm, which, in turn, induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signalling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.
Asunto(s)
ADN Mitocondrial , Nucleotidiltransferasas/metabolismo , Infecciones por Pseudomonas , Animales , Citocinas/metabolismo , ADN Mitocondrial/genética , Inmunidad Innata , Ratones , Nucleotidiltransferasas/genética , Pseudomonas/genética , Pseudomonas/metabolismoRESUMEN
Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales , COVID-19/terapia , Humanos , Ratones , Pandemias/prevención & control , Edición de ARN/genética , ARN Guía de Kinetoplastida/genética , SARS-CoV-2/genéticaRESUMEN
Gut microbiota is increasingly linked to the development of various pulmonary diseases through a gut-lung axis. However, the mechanisms by which gut commensal microbes impact trafficking and functional transition of immune cells remain largely unknown. Using integrated microbiota dysbiosis approaches, we uncover that the gut microbiota directs the migration of group 2 innate lymphoid cells (ILC2s) from the gut to the lung through a gut-lung axis. We identify Proteobacteria as a critical species in the gut microbiome to facilitate natural ILC2 migration, and increased Proteobacteria induces IL-33 production. Mechanistically, IL-33-CXCL16 signaling promotes the natural ILC2 accumulation in the lung, whereas IL-25-CCL25 signals augment inflammatory ILC2 accumulation in the intestines upon abdominal infection, parabiosis, and cecum ligation and puncture in mice. We reveal that these two types of ILC2s play critical but distinct roles in regulating inflammation, leading to balanced host defense against infection. Overall results delineate that Proteobacteria in gut microbiota modulates ILC2 directional migration to the lung for host defense via regulation of select cytokines (IL-33), suggesting novel therapeutic strategies to control infectious diseases.
Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Pulmón/inmunología , Linfocitos/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos C57BLRESUMEN
Rationale: With increasing incidence and prevalence of inflammatory bowel disease (IBD), it has become one of the major public health threats, and there is an urgent need to develop new therapeutic agents. Although the pathogenesis of IBD is still unclear, previous research has provided evidence for complex interplays between genetic, immune, microbial, and environmental factors. Here, we constructed a gene-microbiota interaction-based framework to discover IBD biomarkers and therapeutics. Methods: We identified candidate biomarkers for IBD by analyzing the publicly available transcriptomic and microbiome data from IBD cohorts. Animal models of IBD and diarrhea were established. The inflammation-correlated microbial and genetic variants in gene knockout mice were identified by 16S rRNA sequences and PCR array. We performed bioinformatic analysis of microbiome functional prediction and drug repurposing. Our validation experiments with cells and animals confirmed anti-inflammatory properties of a drug candidate. Results: We identified the DNA-sensing enzyme cyclic GMP-AMP synthase (cGAS) as a potential biomarker for IBD in both patients and murine models. cGAS knockout mice were less susceptible to DSS-induced colitis. cGAS-associated gut microbiota and host genetic factors relating to IBD pathogenesis were also identified. Using a computational drug repurposing approach, we predicted 43 candidate drugs with high potency to reverse colitis-associated gene expression and validated that brefeldin-a mitigates inflammatory response in colitis mouse model and colon cancer cell lines. Conclusions: By integrating computational screening, microbiota interference, gene knockout techniques, and in vitro and in vivo validation, we built a framework for predicting biomarkers and host-microbe interaction targets and identifying repurposing drugs for IBD, which may be tested further for clinical application. This approach may also be a tool for repurposing drugs for treating other diseases.