Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 18(48): e2205227, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36285770

RESUMEN

Ultrathin hybrid perovskites, with exotic properties and two-dimensional geometry, exhibit great potential in nanoscale optical and optoelectronic devices. However, it is still challenging for them to be compatible with high-resolution patterning technology toward miniaturization and integration applications, as they can be readily damaged by the organic solvents used in standard lithography processes. Here, a flexible three-step method is developed to make high-resolution multicolor patterning on hybrid perovskite, particularly achieved on a single nanosheet. The process includes first synthesis of precursor PbI2 , then e-beam lithography and final conversion to target perovskite. The patterns with linewidth around 150 nm can be achieved, which can be applied in miniature optoelectronic devices and high-resolution displays. As an example, the channel length of perovskite photodetectors can be down to 126 nm. Through deterministic vapor-phase anion exchange, a perovskite nanosheet can not only gradually alter the color of the same pattern in a wide wavelength range, but also display different colors simultaneously. The authors are optimistic that the method can be applied for unlimited perovskite types and device configurations for their high-integrated miniature applications.

2.
Sci Bull (Beijing) ; 66(10): 981-990, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36654255

RESUMEN

Although dielectric elastomer (DE) with substantial actuated strain (AS) has been reported 20 years ago, its scientific understanding remains unclear. The most accepted theory of DE, which is proposed in 2000, holds the view that AS of DE is induced by the Maxwell stress. According to this theory, materials have similar ratios of permittivity and Young's modulus should have similar AS, while the experimental results are on contrary to this theory, and the experimental AS has no relationship with ideal AS. Here, a new dipole-conformation-actuated strain cross-scale model is proposed, which can be generally applied to explain the AS of DE without pre-strain. According to this model, several characteristics of an ideal DE are listed in this work and a new DE based on polyphosphazene (PPZ) is synthesized. The AS of PPZ can reach 84% without any pre-strain. At last, a PPZ-based all soft artificial heart (ASAH) is built, which works in the similar way with natural myocardium, indicating that this material has great application potential and possibility in the construction of an ASAH for heart failure (HF) patients.

3.
Research (Wash D C) ; 2020: 1768918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637940

RESUMEN

The emergence of low-dimensional nanomaterials has brought revolutionized development of magnetism, as the size effect can significantly influence the spin arrangement. Since the first demonstration of truly two-dimensional magnetic materials (2DMMs) in 2017, a wide variety of magnetic phases and associated properties have been exhibited in these 2DMMs, which offer a new opportunity to manipulate the spin-based devices efficiently in the future. Herein, we focus on the recent progress of 2DMMs and heterostructures in the aspects of their structural characteristics, physical properties, and spintronic applications. Firstly, the microscopy characterization of the spatial arrangement of spins in 2D lattices is reviewed. Afterwards, the optical probes in the light-matter-spin interactions at the 2D scale are discussed. Then, particularly, we systematically summarize the recent work on the electronic and spintronic devices of 2DMMs. In the section of electronic properties, we raise several exciting phenomena in 2DMMs, i.e., long-distance magnon transport, field-effect transistors, varying magnetoresistance behavior, and (quantum) anomalous Hall effect. In the section of spintronic applications, we highlight spintronic devices based on 2DMMs, e.g., spin valves, spin-orbit torque, spin field-effect transistors, spin tunneling field-effect transistors, and spin-filter magnetic tunnel junctions. At last, we also provide our perspectives on the current challenges and future expectations in this field, which may be a helpful guide for theorists and experimentalists who are exploring the optical, electronic, and spintronic properties of 2DMMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA