RESUMEN
Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gß (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta de la Proteína de Unión al GTP , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , FosforilaciónRESUMEN
High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.
Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/genética , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo , Fenotipo , Genotipo , Fitomejoramiento , Polimorfismo de Nucleótido SimpleRESUMEN
Lint percentage is one of the most essential yield components and an important economic index for cotton planting. Improving lint percentage is an effective way to achieve high-yield in cotton breeding worldwide, especially upland cotton (Gossypium hirsutum L.). However, the genetic basis controlling lint percentage has not yet been systematically understood. Here, we performed a genome-wide association mapping for lint percentage using a natural population consisting of 189 G. hirsutum accessions (188 accessions of G. hirsutum races and one cultivar TM-1). The results showed that 274 single-nucleotide polymorphisms (SNPs) significantly associated with lint percentage were detected, and they were distributed on 24 chromosomes. Forty-five SNPs were detected at least by two models or at least in two environments, and their 5 Mb up- and downstream regions included 584 makers related to lint percentage identified in previous studies. In total, 11 out of 45 SNPs were detected at least in two environments, and their 550 Kb up- and downstream region contained 335 genes. Through RNA sequencing, gene annotation, qRT-PCR, protein-protein interaction analysis, the cis-elements of the promotor region, and related miRNA prediction, Gh_D12G0934 and Gh_A08G0526 were selected as key candidate genes for fiber initiation and elongation, respectively. These excavated SNPs and candidate genes could supplement marker and gene information for deciphering the genetic basis of lint percentage and facilitate high-yield breeding programs of G. hirsutum ultimately.
Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/genética , Fibra de Algodón , Sitios de Carácter Cuantitativo , Fenotipo , FitomejoramientoRESUMEN
YTH domain-containing proteins are one kind of RNA-binding protein involved in post-transcriptional regulation and play multiple roles in regulating the growth, development, and abiotic stress responses of plants. However, the YTH domain-containing RNA-binding protein family has not been previously studied in cotton. In this study, a total of 10, 11, 22, and 21 YTH genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense, and Gossypium hirsutum, respectively. These Gossypium YTH genes were categorized into three subgroups by phylogenetic analysis. The chromosomal distribution, synteny analysis, structures of Gossypium YTH genes, and the motifs of YTH proteins were analyzed. Furthermore, the cis-element of GhYTH genes promoter, miRNA targets of GhYTH genes, and subcellular localization of GhYTH8 and GhYTH16 were characterized. Expression patterns of GhYTH genes in different tissues, organs, and in response to different stresses were also analyzed. Moreover, functional verifications revealed that silencing GhYTH8 attenuated the drought tolerance in the upland cotton TM-1 line. These findings provide useful clues for the functional and evolutionary analysis of YTH genes in cotton.
RESUMEN
Cotton is one of the most important economic and fiber crops in the world. KNOX is one class of universal transcription factors, which plays important roles in plant growth and development as well as response to different stresses. Although there are many researches on KNOXs in other plant species, there are few reports on cotton. In this study, we systematically and comprehensively identified all KNOX genes in upland cotton and its two ancestral species; we also studied their functions by employing RNA-seq analysis and virus-induced gene silence (VIGS). A total of 89 KNOX genes were identified from three cotton species. Among them, 44 were from upland cotton, 22 and 23 were found in its ancestral species G. raimondii and G. arboreum, respectively. Plant polyploidization and domestication play a selective force driving KNOX gene evolution. Phylogenetic analysis displayed that KNOX genes were evolved into three Classes. The intron length and exon number differed in each Class. Transcriptome data showed that KNOX genes of Class II were widely expressed in multiple tissues, including fiber. The majority of KNOX genes were induced by different abiotic stresses. Additionally, we found multiple cis-elements related to stress in the promoter region of KNOX genes. VIGS silence of GhKNOX4-A and GhKNOX22-D genes showed significant growth and development effect in cotton seedlings under salt and drought treatments. Both GhKNOX4-A and GhKNOX22-D regulated plant tolerance; silencing both genes induced oxidative stresses, evidenced by reduced SOD activity and induced leave cell death, and also enhanced stomatal open and water loss. Thus, GhKNOX4-A and GhKNOX22-D may contribute to drought response by regulating stomata opening and oxidative stresses.
Asunto(s)
Sequías , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Estrés Fisiológico/genética , Cloruro de Sodio/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.
RESUMEN
Drought seriously threats the growth and development of Gossypium hirsutum L. To dissect the genetic basis for drought tolerance in the G. hirsutum L. germplasm, a population, consisting of 188 accessions of G. hirsutum races and a cultivar (TM-1), was genotyped using the Cotton80KSNP biochip, and 51,268 high-quality single-nucleotide polymorphisms (SNPs) were obtained. Based on the phenotypic data of eight drought relative traits from four environments, we carried out association mapping with five models using GAPIT software. In total, thirty-six SNPs were detected significantly associated at least in two environments or two models. Among these SNPs, 8 and 28 (including 24 SNPs in 5 peak regions) were distributed in the A and D subgenome, respectively; eight SNPs were found to be distributed within separate genes. An SNP, TM73079, located on chromosome D10, was simultaneously associated with leaf fresh weight, leaf wilted weight, and leaf dry weight. Another nine SNPs, TM47696, TM33865, TM40383, TM10267, TM59672, TM59675, TM59677, TM72359, and TM72361, on chromosomes A13, A10, A12, A5, D6, and D9, were localized within or near previously reported quantitative trait loci for drought tolerance. Moreover, 520 genes located 200 kb up- and down-stream of 36 SNPs were obtained and analyzed based on gene annotation and transcriptome sequencing. The results showed that three candidate genes, Gh_D08G2462, Gh_A03G0043, and Gh_A12G0369, may play important roles in drought tolerance. The current GWAS represents the first investigation into mapping QTL for drought tolerance in G. hirsutum races and provides important information for improving cotton cultivars.
RESUMEN
Trehalose-6-phosphate phosphatase (TPP) is a key enzyme involved in trehalose synthesis in higher plants. Previous studies have shown that TPP family genes increase yields without affecting plant growth under drought conditions, but their functions in cotton have not been reported. In this study, 17, 12, 26 and 24 TPP family genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. The 79 TPP family genes were divided into three subgroups by phylogenetic analysis. Virus-induced gene silencing (VIGS) of GhTPP22 produced TRV::GhTPP22 plants that were more sensitive to drought stress than the control plants, and the relative expression of GhTPP22 was decreased, as shown by qRT-PCR. Moreover, we analysed the gene structure, targeted small RNAs, and gene expression patterns of TPP family members and the physicochemical properties of their encoded proteins. Overall, members of the TPP gene family in cotton were systematically identified, and the function of GhTPP22 under drought stress conditions was preliminarily verified. These findings provide new information for improving drought resistance for cotton breeding in the future.
RESUMEN
Glycerol-3-phosphate dehydrogenase (GPDH) is a key enzyme in plant glycerol synthesis and metabolism, and plays an important role in plant resistance to abiotic stress. Here, we identified 6, 7, 14 and 14 GPDH genes derived from Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. Phylogenetic analysis assigned these genes into three classes, and most of the genes within the family were expanded by whole-genome duplication (WGD) and segmental duplications. Moreover, determination of the nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) ratio showed that the GPDH had an evolutionary preference for purifying selection. Transcriptome data revealed that GPDH genes were more active in the early stages of fiber development. Additionally, numerous stress-related cis-elements were identified in the potential promoter region. Then, a protein-protein-interaction (PPI) network of GPDH5 in G. hirsutum was constructed. In addition, we predicted 30 underlying miRNAs in G. hirsutum. Functional validation results indicated that silencing GhGPDH5 diminished drought tolerance in the upland cotton TM-1 line. In summary, this study provides a fundamental understanding of the GPDH gene family in cotton, GhGPDH5 exerts a positive effect during drought stress and is potentially involved in stomatal closure movements.
RESUMEN
RNA editing is a posttranscriptional phenomenon that includes gene processing and modification at specific nucleotide sites. RNA editing mainly occurs in the genomes of mitochondria and chloroplasts in higher plants. In recent years, pentatricopeptide repeat (PPR) proteins, which may act as trans-acting factors of RNA editing have been identified, and the study of PPR proteins has become a research focus in molecular biology. The molecular functions of these proteins and their physiological roles throughout plant growth and development are widely studied. In this minireview, we summarize the current knowledge of the PPR family, hoping to provide some theoretical reference for future research and applications.
RESUMEN
RNA editing, a vital supplement to the central dogma, yields genetic information on RNA products that are different from their DNA templates. The conversion of C-to-U in mitochondria and plastids is the main kind of RNA editing in plants. Various factors have been demonstrated to be involved in RNA editing. In this minireview, we summarized the factors and mechanisms involved in RNA editing in plant organelles. Recently, the rapid development of deep sequencing has revealed many RNA editing events in plant organelles, and we further reviewed these events identified through deep sequencing data. Numerous studies have shown that RNA editing plays essential roles in diverse processes, such as the biogenesis of chloroplasts and mitochondria, seed development, and stress and hormone responses. Finally, we discussed the functions of RNA editing in plant organelles.
RESUMEN
Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1-McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mentha/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Mentha/genética , Mentha/crecimiento & desarrollo , Familia de Multigenes , Proteínas de Plantas/genética , Homología de SecuenciaRESUMEN
The Negative on TATA-less (NOT) 2_3_5 domain proteins play key roles in mRNA metabolism and transcription regulation, but few comprehensive studies have focused on this protein family in plants. In our study, a total of 30 NOT2_3_5 genes were identified in four cotton genomes: Gossypium. arboretum, G. raimondii, G. hirsutum and G. barbadense. Phylogenetic analysis showed that all the NOT2_3_5 domain proteins were divided into two classes. The NOT2_3_5 genes were expanded frequently, and segmental duplication had significant effects in their expansion process. The cis-regulatory elements analysis of NOT2_3_5 promoter regions indicated that NOT2_3_5 domain proteins might participate in plant growth and development processes and responds to exogenous stimuli. Expression patterns demonstrated that all of the GhNOT2_3_5 genes were expressed in the majority of tissues and fiber development stages, and that these genes were induced by multiple stresses. Quantitative real-time PCR showed that GbNOT2_3_5 genes were up-regulated in response to verticillium wilt and the silencing of GbNOT2_3_5-3/8 and GbNOT2_3_5-4/9 led to more susceptibility to verticillium wilt than controls. Identification and analysis of the NOT2_3_5 protein family will be beneficial for further research on their biological functions.
Asunto(s)
Resistencia a la Enfermedad/genética , Gossypium , Proteínas de Plantas , Factores Generales de Transcripción , Verticillium/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismoRESUMEN
Self-healable polyurethanes can be used in various fields for extended service life and reduced maintenance costs. It is generally believed that the shape memory effect is helpful for achieving a high healing efficiency. The morphological features were focused on in this study as microphase separation is one of the main factors affecting various performances of polyurethanes, including their shape memory behavior and mechanical properties. Microphase separation can be regulated by changing the content and types of the hard segments. With this in mind, polyurethanes from polycaprolactone diol, hexamethylene diisocyanate, and different chain extenders were synthesized, characterized, and designed as promising self-healing polymers. All the polyurethane specimens were equipped with a similar content of hard segments but diverse types, such as aliphatic, aromatic, and disulfide-bonded. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffractometry, infrared spectroscopy, and atomic force microscopy were used to describe the microstructures of the polyurethanes, including the crystalline regions. The relationship between the microphase separation structures and material properties was focused on in this examination. Various properties, including the thermal stability, mechanical behavior, hydrophobicity, and self-healing efficiency showed significant differences due to the change in the hard segments' structure and multiphase distribution. The aliphatic disulfide stimulated the conformation of a proper microphase separation structure (the large heterogeneous structure at physical length scales as well as a more sufficient combination of soft and hard phases), which helped to improve the healing effect as much as possible by effective wound closure and the exchange reactions of disulfide bonds.
RESUMEN
Cotton Verticillium wilt caused by Verticillium dahliae (V. dahliae) is one of the most destructive fungal diseases and is difficult to control. However, resistant germplasm resources are scarce in cotton. Many studies have shown that host-induced gene silencing (HIGS) is a practical and effective technology in crop disease prevention by silencing virulence genes of pathogens. Acetolactate synthase (ALS) contains a catalytic subunit ILV2 and a regulatory subunit ILV6, which catalyzes the first common step reaction in branched-chain amino acid (BCAA) biosynthesis. We identified two acetolactate synthases, VdILV2 and VdILV6, which are homologs of ILV2 and ILV6, respectively, in Magnaporthe oryzae. To characterize the function of VdILV2 and VdILV6 in V. dahliae, we suppressed their expression in the strong pathogenic isolate Vd991 by using HIGS technology. VdILV2- or VdILV6-silenced V. dahliae had a dramatic reduction in pathogenicity. The results indicated that VdILV2 and VdILV6 are involved in the pathogenicity of V. dahliae. HIGS of VdILV2 or VdILV6 provides a novel fungicide target and an effective control to resist Verticillium wilt caused by V. dahliae.
Asunto(s)
Acetolactato Sintasa/genética , Gossypium/microbiología , Enfermedades de las Plantas/microbiología , Verticillium/enzimología , Verticillium/genética , Resistencia a la Enfermedad , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Gossypium/fisiología , Interacciones Huésped-Patógeno , Verticillium/fisiologíaRESUMEN
Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.
Asunto(s)
Vías Biosintéticas , Reparación del ADN , Proteínas Fúngicas/metabolismo , Pirimidinas/biosíntesis , Verticillium/metabolismo , Verticillium/patogenicidad , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Reparación del ADN/efectos de los fármacos , Fluorescencia , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Tiamina/farmacología , Nicotiana/microbiología , Rayos Ultravioleta , Verticillium/efectos de los fármacos , Verticillium/crecimiento & desarrollo , Virulencia/efectos de los fármacos , Virulencia/genética , Virulencia/efectos de la radiaciónRESUMEN
Bisphenol A (BPA) is extensively used in plastic products and epoxy resins. The epigenetic response to the environmental chemical BPA was involved in multiple dysfunctional categories, such as cancer, the reproductive system, metabolism, pubertal development, peripheral arterial disease, infant and childhood growth, and neurodevelopment outcomes. In this mini-review, we described the recent progress of the epigenetic effects of the environmental chemical BPA, including DNA methylation, histone methylation, and toxic epigenomics. Notably, the histone modification changes under BPA exposure are summarized in this review. DNA methylation accompanied by transcriptional changes in key genes affected by BPA exposure is related to various processes, including neural development, cancer pathways, and generational transmission. In addition, BPA could also affect histone modifications in many species, such as humans, rats, and zebrafish. Finally, we reviewed recent studies of the toxico-epigenomics approach to reveal the epigenetic effect of BPA exposure genome-wide.
RESUMEN
Cotton plays an important role in the economy of many countries. Many studies have revealed that numerous genes and various metabolic pathways are involved in anther development. In this research, we studied the differently expressed mRNA and lncRNA during the anther development of cotton between the cytoplasmic male sterility (CMS) line, C2P5A, and the maintainer line, C2P5B, using RNA-seq analysis. We identified 17,897 known differentially expressed (DE) mRNAs, and 865 DE long noncoding RNAs (lncRNAs) that corresponded to 1172 cis-target genes at three stages of anther development using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DE mRNAs; and cis-target genes of DE lncRNAs probably involved in the degradation of tapetum cells, microspore development, pollen development, and in the differentiation, proliferation, and apoptosis of the anther cell wall in cotton. Of these DE genes, LTCONS_00105434, LTCONS_00004262, LTCONS_00126105, LTCONS_00085561, and LTCONS_00085561, correspond to cis-target genes Ghir_A09G011050.1, Ghir_A01G005150.1, Ghir_D05G003710.2, Ghir_A03G016640.1, and Ghir_A12G005100.1, respectively. They participate in oxidative phosphorylation, flavonoid biosynthesis, pentose and glucuronate interconversions, fatty acid biosynthesis, and MAPK signaling pathway in plants, respectively. In summary, the transcriptomic data indicated that DE lncRNAs and DE mRNAs were related to the anther development of cotton at the pollen mother cell stage, tetrad stage, and microspore stage, and abnormal expression could lead to anther abortion, resulting in male sterility of cotton.
Asunto(s)
Flores/genética , Gossypium/genética , ARN Largo no Codificante , ARN Mensajero , Transcriptoma , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/crecimiento & desarrolloRESUMEN
Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Cytoplasmic male sterility (CMS) is an excellent breeding system for exploitation of heterosis, which has great potential to increase crop yields. To understand the molecular mechanism of CMS in cotton, we compared transcriptome, cytomorphological, physiological and bioinformatics data between the CMS line C2P5A and its maintainer line C2P5B. By using high-throughput sequencing technology, 178,166 transcripts were assembled and 2013 differentially expression genes (DEGs) were identified at three different stages of C2P5A anther development. In this study, we identified DEGs associated with reactive oxygen species (ROS), peroxisomes, aldehyde dehydrogenases (ALDH), cytochrome oxidase subunit VI, and cytochrome P450, and DEGs associated with tapetum development, Jojoba acyl-CoA reductase-related male sterility protein, basic helix-loop-helix (bHLH) and MYB transcription factors. The abnormal expression of one of these genes may be responsible for the CMS C2P5A line. In gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, DEGs were mainly related to carbohydrate metabolism, amino acid metabolism, transport and catabolism, and signal transduction. Carbohydrate metabolism provides energy for anther development, starch and sucrose metabolism, fatty acid biosynthesis and metabolism and ascorbate and aldarate metabolism. These results showed that numerous genes and multiple complex metabolic pathways regulate cotton anther development. Weighted correlation network analysis (WGCNA) indicated that three modules, 'turquoise,' 'blue,' and 'green,' were specific for the CMS C2P5A line. The 'turquoise' and 'blue' modules were mainly related to carbohydrate metabolism, amino acid metabolism, energy metabolism, peroxisomes, pyruvate metabolism as well as fatty acid degradation. The 'green' module was mainly related to energy metabolism, carbon metabolism, translation, and lipid metabolism. RNA-sequencing and WGCNA polymerization modules were screened for key genes and pathways related to CMS in cotton. This study presents a new perspective for further research into the metabolic pathways of pollen abortion in the CMS C2P5A line and also provides a theoretical basis for its breeding and production.
Asunto(s)
Genes de Plantas , Gossypium/genética , Infertilidad Vegetal/genética , Transcriptoma , Biología Computacional , Citoplasma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Inmunohistoquímica , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , FenotipoRESUMEN
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance.