Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Discov Oncol ; 15(1): 380, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196459

RESUMEN

OBJECTIVE: To investigate pantothenate kinases 1 (PANK1) expression in kidney renal clear cell carcinoma (KIRC) tissues, analyze its correlation with clinicopathological features and prognosis, and explore its impact on invasion, migration, and apoptosis in KIRC cells. METHODS: GEPIA (gene expression profiling interactive analysis), UALCAN and LinkedOmics, were employed to analyze PANK1 expression in KIRC tissues and its correlation with clinical characteristics. Comparative analyses were performed between KIRC (Caki-1 and 786-O) and noncancerous renal cells (HK-2 and RPTEC). Transfection with PANK1 activation particles was conducted, followed by Wound healing, Transwell assay, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and Western blotting. RESULTS: PANK1 was down-regulated in KIRC tissues and cells compared to normal tissues and noncancerous cells. Correlation analyses linked PANK1 expression with clinicopathological features in KIRC, with high PANK1 expression associated with a favorable outcome. High PANK1 expression correlated positively with E-cadherin (CDH1), tight junction protein 1 (TJP1), Fas cell surface death receptor (FAS), caspase-8 (CASP8), and CASP9, while showing a negative correlation with vimentin (VIM), snail family transcriptional repressor 1 (SNAIL1), twist family BHLH transcription factor 1 (TWIST1), and TWIST2. PANK1 overexpression increased CDH1, TJP1, FAS, CASP8, and CASP9 while downregulating SNAIL1, VIM, TWIST1, and TWIST2, inhibiting invasion and migration, and promoting apoptosis in KIRC cells. CONCLUSION: PANK1 down-regulation in KIRC tissues correlated with clinicopathological features and prognosis. Its overexpression modulated epithelial-mesenchymal transition (EMT)-related gene, inhibited invasion, promoted apoptosis in KIRC cells, highlighting its role in disease progression and therapeutic potential.

2.
Tohoku J Exp Med ; 259(3): 209-219, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36543245

RESUMEN

The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/farmacología , ADN Cruciforme , Proteína C/metabolismo , Proteína C/farmacología , Vejiga Urinaria , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ciclo Celular , Proliferación Celular , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...