Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028863

RESUMEN

Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.

2.
Ecotoxicol Environ Saf ; 268: 115694, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984289

RESUMEN

Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.


Asunto(s)
Plomo , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Plomo/toxicidad , Miocitos Cardíacos/metabolismo , Elastasa de Leucocito/metabolismo
3.
Pharmaceutics ; 15(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37896144

RESUMEN

Light-responsive liposomes have been developed for the on-demand release of drugs. However, efficient delivery of chemotherapeutic drugs to tumor for cancer theranostics remains a challenge. Herein, folic acid (FA), an established ligand for targeted drug delivery, was used to decorate light-sensitive porphyrin-phospholipid (PoP) liposomes, which were assessed for FA-targeted chemophototherapy (CPT). PoP liposomes and FA-conjugated PoP liposomes were loaded with Doxorubicin (Dox), and physical properties were characterized. In vitro, FA-PoP liposomes that were incubated with FA receptor-overexpressing human KB cancer cells showed increased uptake compared to non-targeted PoP liposomes. Dox and PoP contributed towards chemophototherapy (CPT) in vitro, and PoP and FA-PoP liposomes induced cell killing. In vivo, mice bearing subcutaneous KB tumors treated with PoP or FA-PoP liposomes loaded with Dox, followed by 665 nm laser treatment, had delayed tumor growth and improved survival. Dox delivery to tumors increased following laser irradiation for both PoP and FA-PoP liposomes. Thus, while Dox-FA-PoP liposomes were effective following systemic administration and local light irradiation in this tumor model, the FA targeting moiety did not appear essential for anti-tumor responses.

4.
Int J Biol Sci ; 19(13): 4004-4019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705751

RESUMEN

Silicosis is a common and ultimately fatal occupational disease, yet the limited therapeutic option remains the major clinical challenge. Apelin, an endogenous ligand of the G-protein-coupled receptor (APJ), is abundantly expressed in diverse organs. The apelin-APJ axis helps to control pathological and physiological processes in lung. The role of apelin in the pathological process and its possible therapeutic effects on silicosis have not been elucidated. In this study, we found that lung expression and circulating levels of apelin were markedly decreased in silicosis patients and silica-induced fibrotic mice and associated with the severity. Furthermore, in vivo data demonstrated that pre-treatment from day 3 and post-treatment from day 15 with apelin could both alleviate silica-induced pulmonary fibrosis in mice. Besides, apelin inhibited pulmonary fibroblast activation via transforming growth factor beta 1 (TGF-ß1) signaling. Our study suggested that apelin could prevent and reverse silica-induced pulmonary fibrosis by inhibiting the fibroblast activation through TGF-ß1 signaling pathway, thus providing a new potential therapeutic strategy for silicosis and other pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Animales , Ratones , Apelina , Fibroblastos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Factor de Crecimiento Transformador beta1
5.
Int J Biol Macromol ; 253(Pt 3): 126651, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37709227

RESUMEN

Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.


Asunto(s)
Células Madre Mesenquimatosas , Neumonía , Silicosis , Ratones , Animales , Pulmón , Dióxido de Silicio/toxicidad , Dióxido de Silicio/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Silicosis/terapia , Silicosis/metabolismo , Silicosis/patología , Neumonía/metabolismo , Neumonía/patología , Macrófagos , Inflamación/patología , Antiinflamatorios/farmacología
6.
Chem Eng J ; 468: 143616, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37251501

RESUMEN

Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 µg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.

7.
Biosens Bioelectron ; 234: 115353, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37120945

RESUMEN

Lateral flow assays (LFAs) are promising points-of-care tests, playing a vital role in diseases screening, diagnosis and surveillance. However, development of portable, cheap, and smart LFAs platform for sensitive and accurate quantification of disease biomarkers in complex media is challenging. Here, a cheap handheld device was developed to realize on-site detection of disease biomarkers by Nd3+/Yb3+ co-doped near-infrared (NIR)-to-NIR downconversion nanoparticles (DCNPs) based LFA. Its sensitivity is at least 8-fold higher for detecting NIR light signal from Nd3+/Yb3+ co-doped nanoparticles than conventional expensive InGaAs camera based detection platform. Additionally, we enhance NIR quantum yield of Nd3+/Yb3+ co-doped nanoparticles up to 35.5% via simultaneous high dopant of sensitizer ions Nd3+ and emitter ions Yb3+. Combination of NIR-to-NIR handheld detection device and ultra-bright NIR emitting NaNbF4:Yb60%@NaLuF4 nanoparticle probe allows the detection sensitivity of SARS-CoV-2 ancestral strain and Omicron variants specific neutralizing antibodies LFA up to the level of commercial enzyme linked immunosorbent assay kit. Furthermore, by this robust method, enhanced neutralizing antibodies against SARS-CoV-2 ancestral strain and Omicron variants are observed in healthy participants with Ad5-nCoV booster on top of two doses of inactivated vaccine. This NIR-to-NIR handheld platform provides a promising strategy for on-site evaluating protective humoral immunity after SARS-CoV-2 vaccination or infection.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , COVID-19/diagnóstico , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacunación , Anticuerpos Neutralizantes , Biomarcadores , Anticuerpos Antivirales
8.
Virus Res ; 308: 198627, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785275

RESUMEN

Due to the lack of an adaptive immune system, insects rely on innate immune mechanisms to fight against pathogenic infections. Two major innate immune pathways, Toll and IMD, orchestrate anti-pathogen responses by regulating the expression of antimicrobial peptide (AMP) genes. Although the antifungal or antibacterial function of AMPs has been well characterized, the antiviral role of AMPs in insects remains largely unclear. Periplaneta americana (P. americana), or the American cockroach, is used in traditional Chinese medicine as an antiviral agent; however, the underlying mechanism of action of P. americana extracts is unclear. Our previous study showed that the P. americana genome encodes multiple antimicrobial peptide genes. Based on these data, we predicted five novel P. americana defensins (PaDefensins) and analyzed their primary structure, secondary structure, and physicochemical properties. The putative antiviral, antifungal, antibacterial, and anticancer activities suggested that PaDefensin5 is a desirable therapeutic candidate against viral diseases. As the first experimental evidence of the antiviral effects of insect defensins, we also showed the antiviral effect of PaDefensin5 in Drosophila Kc cells and Drosophila embryos in vivo . In conclusion, results of both in silico predictions and subsequent antiviral experiments suggested PaDefensin5 a promising antiviral drug.


Asunto(s)
Periplaneta , Animales , Antibacterianos , Antifúngicos/metabolismo , Antivirales/metabolismo , Antivirales/farmacología , Biología Computacional , Defensinas/metabolismo , Defensinas/farmacología , Drosophila , Insectos , Periplaneta/metabolismo , Periplaneta/microbiología
10.
Int J Biol Macromol ; 173: 541-553, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33493562

RESUMEN

Tissue regeneration and wound healing are still serious clinical complications globally and lack satisfactory cures. Inspired by the impressive regeneration ability of the post-injury earthworms and their widely accepted medicinal properties, we screened and identified a novel collagen-like peptide from the amputated earthworms using high-throughput techniques, including transcriptomics, proteomics, and mass spectrum. The identified collagen-like peptide col4a1 was cloned and expressed to comprehensively investigate the wound healing effect and underlying mechanism. It exerted significant effects on wound healing both in vitro and in vivo, including enhanced viability, proliferation, migration of fibroblasts, granulation, and collagen deposition. Moreover, the col4a1 functioned via binding with integrin α2ß1 and upregulating the RAS/MAPK signaling pathway. This work demonstrates that the novel collagen-like peptide col4a1 obtained from the amputated earthworms enables enhanced wound healing and provides new opportunities for wound care.


Asunto(s)
Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Perfilación de la Expresión Génica/métodos , Integrina alfa1beta1/metabolismo , Oligoquetos/fisiología , Proteómica/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Colágeno Tipo IV/farmacología , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Espectrometría de Masas , Ratones , Células 3T3 NIH , Oligoquetos/genética , Oligoquetos/metabolismo , Análisis de Secuencia de ARN
11.
J Proteome Res ; 20(2): 1217-1228, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33166158

RESUMEN

As a model hemimetabolous insect species and an invasive urban pest that is globally distributed, the American cockroach, Periplaneta americana, is of great interest in both basic and applied research. Previous studies on P. americana neuropeptide identification have been based on biochemical isolation and molecular cloning. In the present study, an integrated approach of genomics- and peptidomics-based discovery was performed for neuropeptide identification in this insect species. First, 67 conserved neuropeptide or neurohormone precursor genes were predicted via an in silico analysis of the P. americana genome and transcriptome. Using a large-scale peptidomic analysis of peptide extracts from four different tissues (the central nervous system, corpora cardiac and corpora allata complex, midgut, and male accessory gland), 35 conserved (predicted) neuropeptides and a potential (novel) neuropeptide were then identified. Subsequent experiments revealed the tissue distribution, sex difference, and developmental patterns of two conserved neuropeptides (allatostatin B and short neuropeptide F) and a novel neuropeptide (PaOGS36577). Our study shows a comprehensive neuropeptidome and detailed spatiotemporal distribution patterns, providing a solid basis for future functional studies of neuropeptides in the American cockroach (data are available via ProteomeXchange with identifier PXD021660).


Asunto(s)
Neuropéptidos , Periplaneta , Secuencia de Aminoácidos , Animales , Femenino , Genómica , Masculino , Neuropéptidos/genética , Péptidos/genética , Periplaneta/genética
12.
Development ; 147(20)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097549

RESUMEN

Vitellogenesis, including vitellogenin (Vg) production in the fat body and Vg uptake by maturing oocytes, is of great importance for the successful reproduction of adult females. The endocrinal and nutritional regulation of vitellogenesis differs distinctly in insects. Here, the complex crosstalk between juvenile hormone (JH) and the two nutrient sensors insulin/IGF signaling (IIS) and target of rapamycin complex1 (TORC1), was investigated to elucidate the molecular mechanisms of vitellogenesis regulation in the American cockroach, Periplaneta americana Our data showed that a block of JH biosynthesis or JH action arrested vitellogenesis, in part by inhibiting the expression of doublesex (Dsx), a key transcription factor gene involved in the sex determination cascade. Depletion of IIS or TORC1 blocked both JH biosynthesis and vitellogenesis. Importantly, the JH analog methoprene, but not bovine insulin (to restore IIS) and amino acids (to restore TORC1 activity), restored vitellogenesis in the neck-ligated (IIS-, TORC1- and JH-deficient) and rapamycin-treated (TORC1- and JH-deficient) cockroaches. Combining classic physiology with modern molecular techniques, we have demonstrated that IIS and TORC1 promote vitellogenesis, mainly via inducing JH biosynthesis in the American cockroach.


Asunto(s)
Proteínas de Insectos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Hormonas Juveniles/biosíntesis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Periplaneta/metabolismo , Transducción de Señal , Vitelogénesis , Animales , Femenino , Metopreno/farmacología , Folículo Ovárico/metabolismo , Sirolimus/farmacología , Vitelogeninas/biosíntesis
13.
Nanotheranostics ; 1(1): 38-58, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29071178

RESUMEN

Phototherapies involve the irradiation of target tissues with light. To further enhance selectivity and potency, numerous molecularly targeted photosensitizers and photoactive nanoparticles have been developed. Active targeting typically involves harnessing the affinity between a ligand and a cell surface receptor for improved accumulation in the targeted tissue. Targeting ligands including peptides, proteins, aptamers and small molecules have been explored for phototherapy. In this review, recent examples of targeted nanomaterials used in phototherapy are summarized.

14.
Nanoscale ; 9(10): 3391-3398, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28247896

RESUMEN

Surfactant-stripped, nanoformulated naphthalocyanines (nanonaps) can be formed with Pluronic F127 and low temperature membrane processing, resulting in dispersed frozen micelles with extreme contrast in the near infrared region. Here, we demonstrate that nanonaps can be used for multifunctional cancer theranostics. This includes lymphatic mapping and whole tumor photoacoustic imaging following intradermal or intravenous injection in rodents. Without further modification, pre-formed nanonaps were used for positron emission tomography and passively accumulated in subcutaneous murine tumors. Because the nanonaps used absorb light beyond the visible range, a topical upconversion skin cream was developed for anti-tumor photothermal therapy with laser placement that can be guided by the naked eye.


Asunto(s)
Neoplasias Experimentales/terapia , Fototerapia , Nanomedicina Teranóstica , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Nanopartículas , Tensoactivos , Distribución Tisular
15.
Biomacromolecules ; 18(2): 562-567, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28146351

RESUMEN

Tetracarboxy porphyrins can be polymerized with polyethylene glycol (PEG) diamines to generate hydrogels with intense, near-infrared, and transdermal fluorescence following subcutaneous implantation. Here, we show that the high density porphyrins of the preformed polymer can be chelated with tin via simple incubation. Tin porphyrin hydrogels exhibited increasing emission intensities, ratios, and lifetimes from pH 1 to 10. Tin porphyrin hydrogel emission was strongly reversible and pH responsiveness was observed in the physiological range between pH 6 and pH 8. pH-sensitive emission was detected via noninvasive transdermal fluorescence imaging in vivo following subcutaneous implantation in mice.


Asunto(s)
Fluorescencia , Hidrogeles/química , Polietilenglicoles/química , Polímeros/química , Porfirinas/química , Estaño/química , Animales , Concentración de Iones de Hidrógeno , Ratones , Polímeros/administración & dosificación , Prótesis e Implantes , Espectrometría de Fluorescencia
16.
Drug Des Devel Ther ; 9: 5511-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26491260

RESUMEN

Tongue squamous cell carcinoma (TSCC) is the most common malignancy in oral and maxillofacial tumors with highly metastatic characteristics. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone; PLB), a natural naphthoquinone derived from the roots of Plumbaginaceae plants, exhibits various bioactivities, including anticancer effects. However, the potential molecular targets and underlying mechanisms of PLB in the treatment of TSCC remain elusive. This study employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic approach to investigate the molecular interactome of PLB in human TSCC cell line SCC25 and elucidate the molecular mechanisms. The proteomic data indicated that PLB inhibited cell proliferation, activated death receptor-mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT) and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC) and l-glutathione (GSH) abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Naftoquinonas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias de la Lengua/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Estrés Oxidativo/efectos de los fármacos , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteómica/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello , Factores de Tiempo , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología
17.
Drug Des Devel Ther ; 9: 1601-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25834400

RESUMEN

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone; PLB), a naturally occurring naphthoquinone isolated from the roots of Plumbaginaceae plants, has been reported to possess anticancer activities in both in vitro and in vivo studies, but the effect of PLB on tongue squamous cell carcinoma (TSCC) is not fully understood. This study aimed to investigate the effects of PLB on cell cycle distribution, apoptosis, and autophagy, and the underlying mechanisms in the human TSCC cell line SCC25. The results have revealed that PLB exerted potent inducing effects on cell cycle arrest, apoptosis, and autophagy in SCC25 cells. PLB arrested SCC25 cells at the G2/M phase in a concentration- and time-dependent manner with a decrease in the expression level of cell division cycle protein 2 homolog (Cdc2) and cyclin B1 and increase in the expression level of p21 Waf1/Cip1, p27 Kip1, and p53 in SCC25 cells. PLB markedly induced apoptosis and autophagy in SCC25 cells. PLB decreased the expression of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) while increasing the expression level of the pro-apoptotic protein Bcl-2-associated X protein (Bax) in SCC25 cells. Furthermore, PLB inhibited phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß), and p38 mitogen-activated protein kinase (p38 MAPK) pathways as indicated by the alteration in the ratio of phosphorylation level over total protein expression level, contributing to the autophagy inducing effect. In addition, we found that wortmannin (a PI3K inhibitor) and SB202190 (a selective inhibitor of p38 MAPK) strikingly enhanced PLB-induced autophagy in SCC25 cells, suggesting the involvement of PI3K- and p38 MAPK-mediated signaling pathways. Moreover, PLB induced intracellular reactive oxygen species (ROS) generation and this effect was attenuated by l-glutathione (GSH) and n-acetyl-l-cysteine (NAC). Taken together, these results indicate that PLB promotes cellular apoptosis and autophagy in TSCC cells involving p38 MAPK- and PI3K/Akt/mTOR-mediated pathways with contribution from the GSK3ß and ROS-mediated pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Naftoquinonas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Lengua/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Estructura Molecular , Naftoquinonas/química , Relación Estructura-Actividad , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Toxicology ; 327: 62-76, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25446327

RESUMEN

The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Grafito/toxicidad , Inflamación/inducido químicamente , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/metabolismo , Puntos Cuánticos , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
PLoS One ; 8(8): e73476, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24014171

RESUMEN

The abundance and potential functional roles of intrinsically disordered regions in aquaporin-4, Kir4.1, a dystrophin isoforms Dp71, α-1 syntrophin, and α-dystrobrevin; i.e., proteins constituting the functional core of the astrocytic dystrophin-associated protein complex (DAPC), are analyzed by a wealth of computational tools. The correlation between protein intrinsic disorder, single nucleotide polymorphisms (SNPs) and protein function is also studied together with the peculiarities of structural and functional conservation of these proteins. Our study revealed that the DAPC members are typical hybrid proteins that contain both ordered and intrinsically disordered regions. Both ordered and disordered regions are important for the stabilization of this complex. Many disordered binding regions of these five proteins are highly conserved among vertebrates. Conserved eukaryotic linear motifs and molecular recognition features found in the disordered regions of five protein constituting DAPC likely enhance protein-protein interactions that are required for the cellular functions of this complex. Curiously, the disorder-based binding regions are rarely affected by SNPs suggesting that these regions are crucial for the biological functions of their corresponding proteins.


Asunto(s)
Pollos/genética , Complejo de Proteínas Asociado a la Distrofina/genética , Lagartos/genética , Distrofias Musculares/genética , Polimorfismo de Nucleótido Simple , Pez Cebra/genética , Animales , Pollos/metabolismo , Complejo de Proteínas Asociado a la Distrofina/química , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Humanos , Lagartos/metabolismo , Ratones , Distrofias Musculares/metabolismo , Distrofia Muscular Animal , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Xenopus laevis , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...