RESUMEN
Industrial biosynthesis of ß-nicotinamide mononucleotide (ß-NMN) lacks a highly active nicotinamide riboside kinase for the phosphorylation process. Cumbersome preprocessing steps and excessive ATP addition contribute to its increased cost. To tackle these challenges, a docking combination simulation (DCS) semirational mutagenesis strategy was designed in this study, combining various modification strategies to obtain a mutant NRK-TRA with 2.9-fold higher enzyme activity. Molecular dynamics simulations and structural analysis demonstrate the enhancement of its structural stability. High-density fermentation was achieved through a 5 L fermentation tank, with a titer reaching 208.3 U/mL, the highest in the current report. An ATP-cycling whole-cell catalytic system was employed and optimized by introducing a polyphosphate kinase 2 (PPK2) recombinant strain, and 15.16 g/L ß-NMN was obtained through a series of batch transformation experiments. This study provides a new strategy for the efficient screening of highly active enzyme variants and offers a green and promising biotransformation system for NMN production.
RESUMEN
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Asunto(s)
Epigénesis Genética , Neoplasias , Sirtuinas , Humanos , Sirtuinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida/métodos , Transducción de Señal/efectos de los fármacosRESUMEN
High-voltage transmission technology can effectively address the issue of uneven spatial and temporal energy distribution, leading to its rapid development in recent years. To address the challenge of accurately identifying the source of the second traveling wave head in complex transmission network scenarios with existing single-ended fault location methods, a traveling wave network fault location method based on adaptive waveform similarity is proposed. The paper analyzes the propagation process of traveling waves in transmission lines and quantitatively derives the time-domain expression of the traveling wave waveform. The BFS algorithm is enhanced by incorporating the propagation characteristics of traveling waves, allowing for the determination of all paths from any location in the topological network to the measurement points. Based on the path information and the derived expression, the traveling wave waveform at the measurement points for the fault location is calculated. An optimization algorithm is used to iteratively solve for unknown parameters such as fault location, traveling wave speed, and fault point information, with the objective of maximizing the similarity between the adaptive waveform and the real waveform by adaptively adjusting the waveform shape. When the similarity between the adaptive waveform and the real waveform is maximized, the adaptive fault location is identified as the actual fault location. Verified through the PSCAD simulation platform, this method can achieve accurate location under different fault conditions.
RESUMEN
OBJECTIVES: This study aims to elucidate the role of Fe2+ overload in kainic acid (KA)-induced excitotoxicity, investigate the involvement of ferritinophagy selective cargo receptor NCOA4 in the pathogenesis of excitotoxicity. METHODS: Western blotting was used to detect the expression of FTH1, NCOA4, Lamp2, TfR, FPN, and DMT1 after KA stereotaxic injection into the unilateral striatum of mice. Colocalization of Fe2+ with lysosomes in KA-treated primary cortical neurons was observed by using confocal microscopy. Desferrioxamine (DFO) was added to chelate free iron, a CCK8 kit was used to measure cell viability, and the Fe2+ levels were detected by FerroOrange. BODIPY C11 was used to determine intracellular lipid reactive oxygen species (ROS) levels, and the mRNA levels of PTGS2, a biomarker of ferroptosis, were measured by fluorescent quantitative PCR. 3-Methyladenine (3-MA) was employed to inhibit KA-induced activation of autophagy, and changes in ferritinophagy-related protein expression and the indicated biomarkers of ferroptosis were detected. Endogenous NCOA4 was knocked down by lentivirus transfection, and cell viability and intracellular Fe2+ levels were observed after KA treatment. RESULTS: Western blot results showed that the expression of NCOA4, DMT1, and Lamp2 was significantly upregulated, while FTH1 was downregulated, but there were no significant changes in TfR and FPN. The fluorescence results indicated that KA enhanced the colocalization of free Fe2+ with lysosomes in neurons. DFO intervention could effectively rescue cell damage, reduce intracellular lipid peroxidation, and decrease the increased transcript levels of PTGS2 caused by KA. Pretreatment with 3-MA effectively reversed KA-induced ferritinophagy and ferroptosis. Endogenous interference with NCOA4 significantly improved cell viability and reduced intracellular free Fe2+ levels in KA-treated cells. CONCLUSION: KA-induced excitotoxicity activates ferritinophagy, and targeting ferritinophagy effectively inhibits downstream ferroptosis. Interference with NCOA4 effectively attenuates KA-induced neuronal damage. This study provides a potential therapeutic target for excitotoxicity related disease conditions.
Asunto(s)
Ferritinas , Ferroptosis , Neuronas , Coactivadores de Receptor Nuclear , Animales , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratones , Ferritinas/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Autofagia/efectos de los fármacos , Autofagia/fisiología , Ratones Endogámicos C57BL , Masculino , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hierro/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Sistema de Transporte de Aminoácidos y+ , Proteínas de Transporte de CatiónRESUMEN
Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme involved in catalyzing cellular redox reactions and serving as a substrate for NAD+-dependent enzymes. It plays a vital role in maintaining tissue homeostasis and promoting healthy aging. Exercise, a well-established and cost-effective method for enhancing health, can influence various pathways related to NAD+ metabolism. Strategies such as supplementing NAD+ precursors, modulating NAD+ synthesis enzymes, or inhibiting enzymes that consume NAD+ can help restore NAD+ balance and improve exercise performance. Various overlapping signaling pathways are known to play a crucial role in the beneficial effects of both NAD+ and exercise on enhancing health and slowing aging process. Studies indicate that a combined strategy of exercise and NAD+ supplementation could synergistically enhance athletic capacity. This review provides an overview of current research on the interactions between exercise and the NAD+ network, underscoring the significance of NAD+ homeostasis in exercise performance. It also offers insights into enhancing exercise capacity and improving aging-related diseases through the optimal use of exercise interventions and NAD+ supplementation methods.
RESUMEN
BACKGROUND: Research studies on gastric cancer have not investigated the combined impact of body composition, age, and tumor staging on gastric cancer prognosis. To address this gap, we used machine learning methods to develop reliable prediction models for gastric cancer. METHODS: This study included 1,132 gastric cancer patients, with preoperative body composition and clinical parameters recorded, analyzed using Cox regression and machine learning models. RESULTS: The multivariate analysis revealed that several factors were associated with recurrence-free survival (RFS) and overall survival (OS) in gastric cancer. These factors included age (≥65â years), tumor-node-metastasis (TNM) staging, low muscle attenuation (MA), low skeletal muscle index (SMI), and low visceral to subcutaneous adipose tissue area ratios (VSR). The decision tree analysis for RFS identified six subgroups, with the TNM staging I, II combined with high MA subgroup showing the most favorable prognosis and the TNM staging III combined with low MA subgroup exhibiting the poorest prognosis. For OS, the decision tree analysis identified seven subgroups, with the subgroup featuring high MA combined with TNM staging I, II showing the best prognosis and the subgroup with low MA, TNM staging II, III, low SMI, and age ≥65â years associated with the worst prognosis. CONCLUSION: Cox regression identified key factors associated with gastric cancer prognosis, and decision tree analysis determined prognoses across different risk factor subgroups. Our study highlights that the combined use of these methods can enhance intervention planning and clinical decision-making in gastric cancer.
RESUMEN
BACKGROUND: Prostate cancer ranks among the six most lethal malignancies worldwide. Telomerase, a reverse transcriptase enzyme, plays a pivotal role in extending cellular telomeres and is intimately associated with cell proliferation and division. However, the interconnection between prostate cancer and telomerase-related genes (TEASEs) remains unclear. METHODS: Somatic mutations and copy number alterations of TEASEs were comprehensively analyzed. Subsequently, the transcripts of prostate cancer patients in TCGA and GEO databases were integrated to delineate new molecular subtypes. Followed by constructing a risk model containing nine characteristic genes through Lasso regression and Cox prognostic analysis among different subtypes. Various aspects including prognosis, tumor microenvironment (TME), landscape of immunity, tumor mutational burden (TMB), stem cell correlation, and median inhibitory concentration amongst different risk groups were compared. Finally, the expression, prognosis, and malignant biological behavior of ZW10 interactor (ZWINT) in vitro was explored. RESULTS: TEASEs exhibited a notably high mutation frequency. Three distinct molecular subtypes and two gene subclusters based on TEASEs were delineated, displaying significant associations with prognosis, immune function regulation, and clinical characteristics. Low-risk patients demonstrated superior prognosis and better response to immunotherapy. Conversely, high-risk patients exhibited higher TMB and stronger stem cell correlations. It was also found that the patients' sensitivity to chemotherapy agents was impacted by the risk score. Finally, ZWINT's potential as a novel diagnostic and prognostic biomarker for prostate cancer was validated. CONCLUSIONS: TEASEs play a pivotal role in modulating immune regulation and immunotherapeutic responses, thereby significantly impacting the diagnosis, prognosis, and treatment strategies for affected patients.
RESUMEN
Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.
RESUMEN
As a major contributor to neonatal death and neurological sequelae, hypoxic-ischemic encephalopathy (HIE) lacks a viable medication for treatment. Oxidative stress induced by hypoxic-ischemic brain damage (HIBD) predisposes neurons to ferroptosis due to the fact that neonates accumulate high levels of polyunsaturated fatty acids for their brain developmental needs but their antioxidant capacity is immature. Ferroptosis is a form of cell death caused by excessive accumulation of iron-dependent lipid peroxidation and is closely associated with mitochondria. Mitophagy is a type of mitochondrial quality control mechanism that degrades damaged mitochondria and maintains cellular homeostasis. In this study we employed mitophagy agonists and inhibitors to explore the mechanisms by which mitophagy exerted ferroptosis resistance in a neonatal rat HIE model. Seven-days-old neonatal rats were subjected to ligation of the right common carotid artery, followed by exposure to hypoxia for 2 h. The neonatal rats were treated with a mitophagy activator Tat-SPK2 peptide (0.5, 1 mg/kg, i.p.) 1 h before hypoxia, or in combination with mitochondrial division inhibitor-1 (Mdivi-1, 20 mg/kg, i.p.), and ferroptosis inhibitor Ferrostatin-1 (Fer-1) (2 mg/kg, i.p.) at the end of the hypoxia period. The regulation of ferroptosis by mitophagy was also investigated in primary cortical neurons or PC12 cells in vitro subjected to 4 or 6 h of OGD followed by 24 h of reperfusion. We showed that HIBD induced mitochondrial damage, ROS overproduction, intracellular iron accumulation, lipid peroxidation and ferroptosis, which were significantly reduced by the pretreatment with Tat-SPK2 peptide, and aggravated by the treatment with Mdivi-1 or BNIP3 knockdown. Ferroptosis inhibitors Fer-1 and deferoxamine B (DFO) reversed the accumulation of iron and lipid peroxides caused by Mdivi-1, hence reducing ferroptosis triggered by HI. We demonstrated that Tat-SPK2 peptide-activated BNIP3-mediated mitophagy did not alleviate neuronal ferroptosis through the GPX4-GSH pathway. BNIP3-mediated mitophagy drove the P62-KEAP1-NRF2 pathway, which conferred ferroptosis resistance by maintaining iron and redox homeostasis via the regulation of FTH1, HO-1, and DHODH/FSP1-CoQ10-NADH. This study may provide a new perspective and a therapeutic drug for the treatment of neonatal HIE.
RESUMEN
Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.
Asunto(s)
Mitocondrias , Mitofagia , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neuronas/metabolismo , Mitocondrias/metabolismo , Ratones , Humanos , Fosforilación Oxidativa , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , NeurogénesisRESUMEN
Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.
RESUMEN
Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.
Asunto(s)
Antidepresivos , Depresión , Modelos Animales de Enfermedad , NADP , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Masculino , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/fisiopatología , NADP/metabolismo , Ratas , Depresión/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Natación , Enfermedad CrónicaRESUMEN
The existence of fractionally quantized topological corner charge serves as a key indicator for two-dimensional (2D) second-order topological insulators (SOTIs), yet it has not been experimentally observed in realistic materials. Here, based on effective model analysis and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in 2D systems with antiferromagnetic (AFM) order. We discover that the band topology originates from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Using first-principles calculations, we show that the 2D AFM SOTI phase can be realized in (MnBi2Te4)(Bi2Te3)m films. Moreover, we demonstrate that the SOTI states are linked to rotation topological invariants under 3-fold rotation symmetry C3, resulting in fractionally quantized corner charge, i.e., n3|e| (mod e). Due to the great achievements in (MnBi2Te4)(Bi2Te3)m systems, our results providing reliable material candidates for experimentally accessible AFM SOTIs should draw intense attention.
RESUMEN
Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.
Asunto(s)
Ferroptosis , NADP , Humanos , NADP/metabolismo , Animales , Aciltransferasas/metabolismo , Aciltransferasas/genética , Ratones , Procesamiento Proteico-PostraduccionalRESUMEN
Heart failure with preserved ejection fraction (HFpEF) is one of the major subtypes of heart failure (HF) and no effective treatments for this common disease exist to date. Cardiac fibrosis is central to the pathology of HF and a potential avenue for the treatment of HFpEF. To explore key fibrosis-related genes and pathways in the pathophysiological process of HFpEF, a mouse model of HFpEF was constructed. The relevant gene expression profiles were downloaded from the Gene Expression Omnibus database, and single-sample Gene Set Enrichment Analysis (ssGSEA) was performed targeting fibrosis-related pathways to explore differentially expressed genes (DEGs) in healthy control and HFpEF heart tissues with cross-tabulation analysis of fibrosis-related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified fibrosis-related genes. The two most significant DEGs were selected, and further validation was conducted in HFpEF mice. The results indicated that myocardial fibrosis was significantly upregulated in HFpEF mice compared to healthy controls, while the ssGSEA results revealed significant differences in the enrichment of nine fibrosis-related pathways in HFpEF myocardial tissue, with 112 out of 798 DEGs being related to fibrosis. The in vivo results demonstrated that expression levels of resistin-like molecule gamma (Relmg) and adenylate cyclase 1 (Adcy1) in the heart tissues of HFpEF mice were significantly higher and lower, respectively, compared to healthy controls. Taken together, these results suggest that Relmg and Acdy1 as well as the fibrosis process may be potential targets for HFpEF treatment.
Asunto(s)
Adenilil Ciclasas , Fibrosis , Insuficiencia Cardíaca , Animales , Ratones , Fibrosis/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Miocardio/metabolismo , Miocardio/patología , Masculino , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones Endogámicos C57BLRESUMEN
AIMS: About 20-40% patients with type 2 diabetes mellitus (T2DM) had an increased risk of developing diabetic nephropathy (DN). Dipeptidyl peptidase-4 inhibitors (DPP-4i) were recommended for treatment of T2DM, while the impact of DPP-4i on renal function remained unclear. This study aimed to explore the effect of DPP-4i on renal parameter of estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) in T2DM. METHODS: A systematic search was performed across PubMed, Embase and Cochrane Library. A fixed or random-effects model was used for quantitative synthesis according to the heterogeneity, which was assessed with I2 index. Sensitivity analysis and publication bias were performed with standard methods, respectively. RESULTS: A total of 17 randomized controlled trials were identified. Administration of DPP-4i produced no significant effect on eGFR (WMD, -0.92 mL/min/1.73m2, 95% CI, -2.04 to 0.19) in diabetic condition. DPP-4i produced a favorable effect on attenuating ACR (WMD, -2.76 mg/g, 95% CI, -5.23 to -0.29) in patients with T2DM. The pooled estimate was stable based on the sensitivity test. No publication bias was observed according to Begg's and Egger's tests. CONCLUSIONS: Treatment with DPP-4i preserved the renal parameter of eGFR in diabetic condition. Available evidences suggested that administration of DPP-4i produced a favorable effect on attenuating ACR in patients with T2DM. INTERNATIONAL PROSPECTIVE REGISTER FOR SYSTEMATIC REVIEW (PROSPERO) NUMBER: CRD.42020144642.
Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores de la Dipeptidil-Peptidasa IV , Tasa de Filtración Glomerular , Riñón , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Tasa de Filtración Glomerular/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Riñón/efectos de los fármacos , Riñón/fisiopatología , Creatinina/orina , Creatinina/sangreRESUMEN
Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200â¯mg/kg NR for 3â¯h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5â¯mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.
Asunto(s)
Apoptosis , Daño por Reperfusión Miocárdica , Niacinamida , Estrés Oxidativo , Compuestos de Piridinio , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 3 , Superóxido Dismutasa , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Sirtuina 3/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Niacinamida/farmacología , Niacinamida/análogos & derivados , Superóxido Dismutasa/metabolismo , Ratas , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Compuestos de Piridinio/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Cardiotónicos/farmacología , SirtuinasRESUMEN
The sirtuin (SIRT) family is well-known as a group of deacetylase enzymes that rely on nicotinamide adenine dinucleotide (NAD+). Among them, mitochondrial SIRTs (SIRT3, SIRT4, and SIRT5) are deacetylases located in mitochondria that regulate the acetylation levels of several key proteins to maintain mitochondrial function and redox homeostasis. Mitochondrial SIRTs are reported to have the Janus role in tumorigenesis, either tumor suppressive or oncogenic functions. Although the multi-faceted roles of mitochondrial SIRTs with tumor-type specificity in tumorigenesis, their critical functions have aroused a rising interest in discovering some small-molecule compounds, including inhibitors and activators for cancer therapy. Herein, we describe the molecular structures of mitochondrial SIRTs, focusing on elucidating their regulatory mechanisms in carcinogenesis, and further discuss the recent advances in developing their targeted small-molecule compounds for cancer therapy. Together, these findings provide a comprehensive understanding of the crucial roles of mitochondrial SIRTs in cancer and potential new therapeutic strategies.
Asunto(s)
Mitocondrias , Neoplasias , Sirtuinas , Sirtuinas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/metabolismo , Carcinogénesis/efectos de los fármacosRESUMEN
Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.
Asunto(s)
Animales Recién Nacidos , Hipocampo , Hipoxia-Isquemia Encefálica , Mitofagia , Neuronas , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Supervivencia Celular/fisiología , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia-Isquemia Encefálica/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Obesity is one of the most common metabolic diseases around the world, which is distinguished by the abnormal buildup of triglycerides within adipose cells. Recent research has revealed that autophagy regulates lipid mobilization to maintain energy balance. TIGAR (Trp53 induced glycolysis regulatory phosphatase) has been identified as a glycolysis inhibitor, whether it plays a role in the metabolism of lipids is unknown. Here, we found that TIGAR transgenic (TIGAR+/+) mice exhibited increased fat mass and trended to obesity phenotype. Non-target metabolomics showed that TIGAR caused the dysregulation of the metabolism profile. The quantitative transcriptome sequencing identified an increased levels of LRRK2 and RAB7B in the adipose tissue of TIGAR+/+ mice. It was confirmed in vitro that TIGAR overexpression increased the levels of LRRK2 by inhibiting polyubiquitination degradation, thereby suppressing macroautophagy and chaperone-mediated autophagy (CMA) while increasing lipid accumulation which were reversed by the LRRK2 inhibitor DNL201. Furthermore, TIGAR drove LRRK2 to interact with RAB7B for suppressing lysosomal degradation of lipid droplets, while the increased lipid droplets in adipocytes were blocked by the RAB7B inhibitor ML282. Additionally, fat-specific TIGAR knockdown of TIGAR+/+ mice alleviated the symptoms of obesity, and adipose tissues-targeting superiority DNL201 nano-emulsion counteracted the obesity phenotype in TIGAR+/+ mice. In summary, the current results indicated that TIGAR performed a vital function in the lipid metabolism through LRRK2-mediated negative regulation of macroautophagy and CMA in adipocyte. The findings suggest that TIGAR has the potential to serve as a viable therapeutic target for treating obesity and its associated metabolic dysfunction.