Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ren Fail ; 46(2): 2367705, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39010847

RESUMEN

Previous studies indicate a strong correlation between the incidence of chronic kidney disease (CKD) and lower economic status. However, these studies often struggle to delineate a clear cause-effect relationship, leaving healthcare providers uncertain about how to manage kidney disease in a way that improves patients' financial outcomes. Our study aimed to explore and establish a causal relationship between CKD and socioeconomic status, identifying critical influencing factors. We utilized summary meta-analysis data from the CKDGen Consortium and UK Biobank. Genetic variants identified from these sources served as instrumental variables (IVs) to estimate the association between CKD and socioeconomic status. The presence or absence of CKD, estimated glomerular filtration rate (eGFR), and albuminuria were used as exposures, while income and regional deprivation were analyzed as outcomes. We employed the R packages 'TwoSampleMR' and 'Mendelianrandomization' to conduct both univariable and multivariable Mendelian randomization (MR) analyses, assessing for potential pleiotropy and heterogeneity. Our univariable MR analysis revealed a significant causal relationship between high levels of albuminuria and lower income (OR = 0.84, 95% CI: 0.73-0.96, p = 0.013), with no significant pleiotropy detected. In the multivariable MR analysis, both CKD (OR = 0.867, 95% CI: 0.786-0.957, p = 0.0045) and eGFR (OR = 0.065, 95% CI: 0.010-0.437, p = 0.0049) exhibited significant effects on income. This study underscores that higher albuminuria levels in CKD patients are associated with decreased income and emphasizes the importance of effective management and treatment of albuminuria in CKD patients to mitigate both social and personal economic burdens.


Asunto(s)
Albuminuria , Tasa de Filtración Glomerular , Análisis de la Aleatorización Mendeliana , Insuficiencia Renal Crónica , Clase Social , Humanos , Insuficiencia Renal Crónica/complicaciones
2.
Math Biosci Eng ; 20(9): 16194-16211, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37920009

RESUMEN

While Bayesian networks (BNs) offer a promising approach to discussing factors related to many diseases, little attention has been poured into chronic kidney disease with mental illness (KDMI) using BNs. This study aimed to explore the complex network relationships between KDMI and its related factors and to apply Bayesian reasoning for KDMI, providing a scientific reference for its prevention and treatment. Data was downloaded from the online open database of CHARLS 2018, a population-based longitudinal survey. Missing values were first imputed using Random Forest, followed by propensity score matching (PSM) for class balancing regarding KDMI. Elastic Net was then employed for variable selection from 18 variables. Afterwards, the remaining variables were included in BNs model construction. Structural learning of BNs was achieved using tabu algorithm and the parameter learning was conducted using maximum likelihood estimation. After PSM, 427 non-KDMI cases and 427 KDMI cases were included in this study. Elastic Net identified 11 variables significantly associated with KDMI. The BNs model comprised 12 nodes and 24 directed edges. The results suggested that diabetes, physical activity, education levels, sleep duration, social activity, self-report on health and asset were directly related factors for KDMI, whereas sex, age, residence and Internet access represented indirect factors for KDMI. BN model not only allows for the exploration of complex network relationships between related factors and KDMI, but also could enable KDMI risk prediction through Bayesian reasoning. This study suggests that BNs model holds great prospects in risk factor detection for KDMI.


Asunto(s)
Trastornos Mentales , Insuficiencia Renal Crónica , Humanos , Estudios Transversales , Teorema de Bayes , Algoritmos , Insuficiencia Renal Crónica/epidemiología , Trastornos Mentales/epidemiología
3.
Front Immunol ; 13: 974648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275752

RESUMEN

Background: Dysbiosis of the gut microbiota is closely related to chronic systemic inflammation and autoimmunity, playing an essential role in the pathogenesis of primary Sjögren's syndrome (pSS). Abnormalities in the proportions of blood T lymphocyte subtype, that is Th17/Treg, were detected in pSS patients. We aimed to determine the associations between gut microbiota and Th17/Treg in pSS. Method: 98 pSS patients and 105 healthy controls (NC) were enrolled between Dec 1, 2018, and Aug 31, 2019. The baseline information and clinical parameters on pSS patients and healthy controls were collected. 16S rRNA sequencing was performed to characterize the gut microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, associations between relative abundances of specific bacterial taxa in the gut and clinical outcome parameters were evaluated. Results: Patients with pSS show decreased gut microbial diversity and richness, decreased abundance of butyrate producing bacteria, such as Roseburia and Coprococcus, and increased abundance of other taxa, such as Eubacterium rectale and Roseburia inulinivorans. These bacteria are enriched with functions related to glycolytic and lipogenic, energy, substance, galactose, pentose metabolism pathways and glucuronate interconversions, decreased with functions related to peptidoglycan biosynthesis, pyrimidine metabolism pathways. An integrative analysis identified pSS-related specific bacterial taxa in the gut, for which the abundance of Eubacterium rectale is negatively correlated with Th17/Treg. Furthermore, the pathways of biosynthesis of secondary metabolites, biosynthesis of amino acids, peptidoglycan biosynthesis and pyrimidine, galactose, pentose, microbial metabolism in diverse environments, glyoxylate and dicarboxylate metabolism are associated with Treg or Th17/Treg. Conclusions: Primary Sjögren's syndrome could lead to decreased gut microbial diversity and richness of intestinal flora in patients. The proportions of Th17 and Treg cells induced by microbiota were predictive pSS manifestations and accounted for the pSS severity.


Asunto(s)
Síndrome de Sjögren , Células Th17 , Humanos , ARN Ribosómico 16S/genética , Galactosa , Peptidoglicano , Bacterias/genética , Inflamación/complicaciones , Pirimidinas , Aminoácidos , Glioxilatos , Glucuronatos , Pentosas , Butiratos
4.
Front Immunol ; 13: 929138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059518

RESUMEN

Background: IgA nephropathy (IgAN) is an autoimmune disease that affects people of any age and is an important cause of end-stage renal disease. However, the pathogenesis and pathophysiology of IgAN is not clear. This article aimed to explore the immune-mediated inflammation and genetic mechanisms in IgAN. Methods: The transcriptome sequencing data of IgAN glomeruli in the Gene Expression Omnibus database were downloaded. Single-sample gene set enrichment analysis was used to estimate the immune microenvironment of the merged microarray data and GSE141295. IgAN samples were divided into two clusters by cluster analysis. "limma" and "DEseq2" package in R were used to identify differentially expressed genes (DEGs). The weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules related to inflammation in IgAN. R software package "clusterProfiler" was used for enrichment analysis, whereas Short Time-Series Expression Miner (STEM) analysis was used to identify the trend of gene expression. Machine-learn (ML) was performed using the shiny app. Finally, Drug Signatures Database (DSigDB) was used to identify potential molecules for treating IgAN. Results: The infiltration of macrophages in IgAN glomeruli was increased, whereas CD4+ T cells, especially inducedregulatory T cells (iTregs) were decreased. A total of 1,104 common DEGs were identified from the merged data and GSE141295. Brown module was identified to have the highest inflammatory correlation with IgAN using WGCNA, and 15 hub genes were screened from this module. Among these 15 hub genes, 14 increased with the severity of IgAN inflammation based on STEM analysis. Neural network (nnet) is considered as the best model to predict the severity of IgAN. Fucose identified from DSigDB has a potential biological activity to treat IgAN. Conclusion: The increase of macrophages and the decrease of iTregs in glomeruli represent the immune-mediated inflammation of IgAN, and fucose may be a potential therapeutic molecule against IgAN because it affects genes involved in the severe inflammation of IgAN.


Asunto(s)
Perfilación de la Expresión Génica , Glomerulonefritis por IGA , Fucosa , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , Humanos , Inmunoglobulina A/genética , Inflamación/genética
5.
Biomolecules ; 12(9)2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36139115

RESUMEN

(1) Objective: Identification of potential genetic biomarkers for various glomerulonephritis (GN) subtypes and discovering the molecular mechanisms of GN. (2) Methods: four microarray datasets of GN were downloaded from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression profiles of eight GN subtypes. Then, differentially expressed immune-related genes (DIRGs) were identified to explore the molecular mechanisms of GN, and single-sample gene set enrichment analysis (ssGSEA) was performed to discover the abnormal inflammation in GN. In addition, a nomogram model was generated using the R package "glmnet", and the calibration curve was plotted to evaluate the predictive power of the nomogram model. Finally, deep learning (DL) based on a multilayer perceptron (MLP) network was performed to explore the characteristic genes for GN. (3) Results: we screened out 274 common up-regulated or down-regulated DIRGs in the glomeruli and tubulointerstitium. These DIRGs are mainly involved in T-cell differentiation, the RAS signaling pathway, and the MAPK signaling pathway. ssGSEA indicates that there is a significant increase in DC (dendritic cells) and macrophages, and a significant decrease in neutrophils and NKT cells in glomeruli, while monocytes and NK cells are increased in tubulointerstitium. A nomogram model was constructed to predict GN based on 7 DIRGs, and 20 DIRGs of each subtype of GN in glomeruli and tubulointerstitium were selected as characteristic genes. (4) Conclusions: this study reveals that the DIRGs are closely related to the pathogenesis of GN and could serve as genetic biomarkers in GN. DL further identified the characteristic genes that are essential to define the pathogenesis of GN and develop targeted therapies for eight GN subtypes.


Asunto(s)
Aprendizaje Profundo , Glomerulonefritis , Biomarcadores/análisis , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Humanos , Glomérulos Renales/química , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Macrófagos/metabolismo
6.
Front Med (Lausanne) ; 9: 823267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655857

RESUMEN

Microbial ecosystem consists of a complex community of bacterial interactions and its host microenvironment (tissue, cell, metabolite). Because the interaction between gut microbiota and host involves many diseases and seriously affects human health, the study of the interaction mechanism between gut microbiota and host has attracted great attention. The gut microbiome is made up of 100 trillion bacteria that have both beneficial and adverse effects on human health. The development of IgA Nephropathy results in changes in the intestinal microbial ecosystem that affect host physiology and health. Similarly, changes in intestinal microbiota also affect the development of IgA Nephropathy. Thus, the gut microbiome represents a novel therapeutic target for improving the outcome of IgA Nephropathy, including hematuria symptoms and disease progression. In this review, we summarize the effect of intestinal microbiota on IgA Nephropathy in recent years and it has been clarified that the intestinal microbiota has a great influence on the pathogenesis and treatment of IgA Nephropathy.

7.
Front Immunol ; 13: 916934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769467

RESUMEN

Background: IgA nephropathy (IgAN) is the most frequent glomerulonephritis in inflammatory bowel disease (IBD). However, the inter-relational mechanisms between them are still unclear. This study aimed to explore the shared gene effects and potential immune mechanisms in IgAN and IBD. Methods: The microarray data of IgAN and IBD in the Gene Expression Omnibus (GEO) database were downloaded. The differential expression analysis was used to identify the shared differentially expressed genes (SDEGs). Besides, the shared transcription factors (TFs) and microRNAs (miRNAs) in IgAN and IBD were screened using humanTFDB, HMDD, ENCODE, JASPAR, and ChEA databases. Moreover, weighted gene co-expression network analysis (WGCNA) was used to identify the shared immune-related genes (SIRGs) related to IgAN and IBD, and R software package org.hs.eg.db (Version3.1.0) were used to identify common immune pathways in IgAN and IBD. Results: In this study, 64 SDEGs and 28 SIRGs were identified, and the area under the receiver operating characteristic curve (ROC) of 64 SDEGs was calculated and two genes (MVP, PDXK) with high area under the curve (AUC) in both IgAN and IBD were screened out as potential diagnostic biomarkers. We then screened 3 shared TFs (SRY, MEF2D and SREBF1) and 3 miRNAs (hsa-miR-146, hsa-miR-21 and hsa-miR-320), and further found that the immune pathways of 64SDEGs, 28SIRGs and 3miRNAs were mainly including B cell receptor signaling pathway, FcγR-mediated phagocytosis, IL-17 signaling pathway, toll-like receptor signaling pathway, TNF signaling pathway, TRP channels, T cell receptor signaling pathway, Th17 cell differentiation, and cytokine-cytokine receptor interaction. Conclusion: Our work revealed the differentiation of Th17 cells may mediate the abnormal humoral immunity in IgAN and IBD patients and identified novel gene candidates that could be used as biomarkers or potential therapeutic targets.


Asunto(s)
Glomerulonefritis por IGA , Enfermedades Inflamatorias del Intestino , MicroARNs , Células Th17 , Biomarcadores/metabolismo , Diferenciación Celular/inmunología , Glomerulonefritis por IGA/inmunología , Humanos , Inmunidad Humoral , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , MicroARNs/genética , Células Th17/citología , Células Th17/inmunología
8.
J Immunol Res ; 2022: 9284204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528619

RESUMEN

Objective: To investigate the potential diagnostic and predictive significance of immune-related genes in IgA nephropathy (IgAN) and discover the abnormal glomerular inflammation in IgAN. Methods: GSE116626 was used as a training set to identify different immune-related genes (DIRGs) and establish machine learning models for the diagnosis of IgAN; then, a nomogram model was generated based on GSE116626, and GSE115857 was used as a test set to evaluate its clinical value. Short Time-Series Expression Miner (STEM) analysis was also performed to explore the changing trend of DIRGs with the progression of IgAN lesions. GSE141344 was used with DIRGs to establish the ceRNA network associated with IgAN progression. Finally, ssGSEA analysis was performed on the GSE141295 dataset to discover the abnormal inflammation in IgAN. Results: Machine learning (ML) performed excellently in diagnosing IgAN using six DIRGs. A nomogram model was constructed to predict IgAN based on the six DIRGs. Three trends related to IgAN lesions were identified using STEM analysis. A ceRNA network associated with IgAN progression which contained 8 miRNAs, 14 lncRNAs, and 3 mRNAs was established. A higher macrophage ratio and lower CD4+ T cell ratio in IgAN compared to controls were observed, and the correlation between macrophages and monocytes in the glomeruli of IgAN patients was inverse compared to controls. Conclusion: This study reveals the diagnostic and predictive significance of DIRGs in IgAN and finds that the imbalance between macrophages and CD4+ immune cells may be an important pathomechanism of IgAN. These results provide potential directions for the treatment and prevention of IgAN.


Asunto(s)
Glomerulonefritis por IGA , Femenino , Glomerulonefritis por IGA/diagnóstico , Glomerulonefritis por IGA/genética , Humanos , Inflamación/patología , Glomérulos Renales/patología , Macrófagos/patología , Masculino , ARN Mensajero/genética
9.
Biomed Res Int ; 2022: 2259164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502341

RESUMEN

Lupus nephritis (LN) is the most common and significant complication of systemic lupus erythematosus (SLE) due to its poor prognosis and mortality rates in SLE patients. There is a critical need for new drugs as the pathogenesis of LN remains to be elucidated and immunosuppressive therapy comes with many deficiencies. In this study, 23 hub genes (IFI6, PLSCR1, XAF1, IFI16, IFI44, MX1, IFI44L, IFIT3, IFIT2, IFI27, DDX58, EIF2AK2, IFITM1, RTP4, IFITM3, TRIM22, PARP12, IFIH1, OAS1, HERC6, RSAD2, DDX60, and MX2) were identified through bioinformatics and network analysis and are closely related to interferon production and function. Interestingly, immune cell infiltration analysis and correlation analysis demonstrate a positive correlation between the expression of 23 hub genes and monocyte infiltration in glomeruli and M2 macrophage infiltration in the tubulointerstitium of LN patients. Additionally, the CTD database, DsigDB database, and DREIMT database were used to explore the bridging role of genes in chemicals and LN as well as the potential influence of these chemicals on immune cells. After comparison and discussion, six small molecules (Acetohexamide, Suloctidil, Terfenadine, Prochlorperazine, Mefloquine, and Triprolidine) were selected for their potential ability in treating lupus nephritis.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Biología Computacional , Femenino , Expresión Génica , Genes Reguladores , Humanos , Lupus Eritematoso Sistémico/genética , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética
10.
Front Med (Lausanne) ; 9: 930541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698845

RESUMEN

Introduction: Chronic kidney disease (CKD) is a progressive disease with high incidence but early imperceptible symptoms. Since China's rural areas are subject to inadequate medical check-ups and single disease screening programme, it could easily translate into end-stage renal failure. This study aimed to construct an early warning model for CKD tailored to impoverished areas by employing machine learning (ML) algorithms with easily accessible parameters from ten rural areas in Shanxi Province, thereby, promoting a forward shift of treatment time and improving patients' quality of life. Methods: From April to November 2019, CKD opportunistic screening was carried out in 10 rural areas in Shanxi Province. First, general information, physical examination data, blood and urine specimens were collected from 13,550 subjects. Afterward, feature selection of explanatory variables was performed using LASSO regression, and target datasets were balanced using the SMOTE (synthetic minority over-sampling technique) algorithm, i.e., albuminuria-to-creatinine ratio (ACR) and α1-microglobulin-to-creatinine ratio (MCR). Next, Bagging, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were employed for classification of ACR outcomes and MCR outcomes, respectively. Results: 12,330 rural residents were included in this study, with 20 explanatory variables. The cases with increased ACR and increased MCR represented 1,587 (12.8%) and 1,456 (11.8%), respectively. After conducting LASSO, 14 and 15 explanatory variables remained in these two datasets, respectively. Bagging, RF, and XGBoost performed well in classification, with the AUC reaching 0.74, 0.87, 0.87, 0.89 for ACR outcomes and 0.75, 0.88, 0.89, 0.90 for MCR outcomes. The five variables contributing most to the classification of ACR outcomes and MCR outcomes constituted SBP, TG, TC, and Hcy, DBP and age, TG, SBP, Hcy and FPG, respectively. Overall, the machine learning algorithms could emerge as a warning model for CKD. Conclusion: ML algorithms in conjunction with rural accessible indexes boast good performance in classification, which allows for an early warning model for CKD. This model could help achieve large-scale population screening for CKD in poverty-stricken areas and should be promoted to improve the quality of life and reduce the mortality rate.

11.
Math Biosci Eng ; 19(12): 13660-13674, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36654062

RESUMEN

Stroke is a major chronic non-communicable disease with high incidence, high mortality, and high recurrence. To comprehensively digest its risk factors and take some relevant measures to lower its prevalence is of great significance. This study aimed to employ Bayesian Network (BN) model with Max-Min Hill-Climbing (MMHC) algorithm to explore the risk factors for stroke. From April 2019 to November 2019, Shanxi Provincial People's Hospital conducted opportunistic screening for stroke in ten rural areas in Shanxi Province. First, we employed propensity score matching (PSM) for class balancing for stroke. Afterwards, we used Chi-square testing and Logistic regression model to conduct a preliminary analysis of risk factors for stroke. Statistically significant variables were incorporated into BN model construction. BN structure learning was achieved using MMHC algorithm, and its parameter learning was achieved with Maximum Likelihood Estimation. After PSM, 748 non-stroke cases and 748 stroke cases were included in this study. BN was built with 10 nodes and 12 directed edges. The results suggested that age, fasting plasma glucose, systolic blood pressure, and family history of stroke constitute direct risk factors for stroke, whereas sex, educational levels, high density lipoprotein cholesterol, diastolic blood pressure, and urinary albumin-to-creatinine ratio represent indirect risk factors for stroke. BN model with MMHC algorithm not only allows for a complicated network relationship between risk factors and stroke, but also could achieve stroke risk prediction through Bayesian reasoning, outshining traditional Logistic regression model. This study suggests that BN model boasts great prospects in risk factor detection for stroke.


Asunto(s)
Algoritmos , Accidente Cerebrovascular , Humanos , Teorema de Bayes , Accidente Cerebrovascular/epidemiología , Factores de Riesgo , Modelos Logísticos
12.
Front Cell Infect Microbiol ; 12: 1061629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590596

RESUMEN

Objective: To explore the common differential flora of IgAN, Kawasaki disease and IgA vasculitis by screening and analyzing the differential intestinal flora between the three disease groups of IgAN, Kawasaki disease and IgA vasculitis and their healthy controls. Methods: Papers on 16srRNA sequencing-related intestinal flora of IgAN, Kawasaki disease and IgA vasculitis were searched in databases, the literature was systematically collated and analysed, the original data was download from the relevant databases, and then the operational taxonomic unit and species classification analysis were performed. Besides, Alpha diversity analysis and Beta diversity analysis were performed to screen for IgAN, Kawasaki disease and I1gA vasculitis groups and finally compare the common intestinal differential flora among the three groups. Results: Among the common differential flora screened, Lachnospiracea_incertae_sedis was lower in both the IgAN and Kawasaki disease groups than in the respective healthy controls; Coprococcus was low in the IgAN group but high in the IgA vasculitis group. Fusicatenibacter was lower in both the Kawasaki disease and IgA vasculitis groups than in their respective healthy controls, and Intestinibacter was low in the Kawasaki disease group, but its expression was high in the IgA vasculitis group. Conclusion: The dysbiosis of the intestinal flora in the three groups of patients with IgAN, Kawasaki disease and IgA vasculitis, its effect on the immunity of the organism and its role in the development of each disease group remain unclear, and the presence of their common differential flora may further provide new ideas for the association of the pathogenesis of the three diseases.


Asunto(s)
Microbioma Gastrointestinal , Glomerulonefritis por IGA , Vasculitis por IgA , Síndrome Mucocutáneo Linfonodular , Vasculitis , Humanos , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/diagnóstico , Vasculitis/diagnóstico , Vasculitis/genética , Inmunoglobulina A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...