Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(18): 9785-9796, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38680055

RESUMEN

Surface modification, such as bioinspired nanostructured doubly reentrant surfaces that have presented superhydrophobic wettability even under low-surface-tension liquid, is a very promising technology for controlling droplet dynamics, heat transfer, and evaporation. In this article, we investigate the interfacial effects of nanostructured doubly reentrant surfaces on the flow behaviors and local concentration evolution during the evaporation of an ethanol/water multicomponent droplet. Using particle image velocimetry (PIV) and novel aggregate-induced emission-based (AIE) techniques, the flow patterns and local concentration distributions on both hydrophobic and nanostructured doubly reentrant surfaces were probed and compared. It is found that in addition to the established Marangoni flow-dominated stage, transition stage, and buoyancy-induced flow-dominated stage, a new transition stage and a rolling stage for the nanostructured doubly reentrant surface are detected in the late evaporation period. Differences in the local concentration distribution evolution occur depending on the hydrophobicity of the surface on which the droplet is placed. For the hydrophobic surface, a nonuniform local concentration distribution exists consistently, with a high water fraction in a shell-shaped region near the liquid-air interface and a secondary concentration gradient within this shell-shaped region. The concentration distribution on the nanostructured doubly reentrant surface evolves in a more complex manner, with a strip-shaped region of high water fraction forming in the intermediate stage and then reorganized by rolling flow in the late stage. Finally, theoretical analysis combining PIV and AIE visualization results reveals that the variations in droplet concentration distributions on surfaces with different hydrophobicities exert a significant impact on evaporative behaviors. These behaviors, in turn, affect the evolution of the local concentration distribution.

2.
Nat Commun ; 15(1): 1567, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378825

RESUMEN

Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet's free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.

3.
ACS Biomater Sci Eng ; 9(11): 6504-6514, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37796119

RESUMEN

The human metabolic rate has attracted increasing interest as it is the most critical parameter in thermal comfort evaluation, a challenging field, while it is always determined imprecisely. The main issue hampering metabolic rate portable measurement is a lack of reliable methods. Current measuring solutions are unsatisfactory because nonportable bulky size systems and disturbance masks are required. This paper proposes a novel metabolic rate measurement model, which we believe is the first of its kind, to accurately identify and predict human metabolism values via wearable technology. Based on a newly developed theory, the designed wearable metabolic rate sensor was fabricated to measure key parameters: heart rate, heat loss, and skin resistance. Together with the body muscle rate, the new final linear metabolic rate model showed easy prediction capability. Eight volunteers were invited for the experiment under three conditions under four activity intensity states. First, the results significantly verify that a linear relationship exists between the metabolic rate tested by the Quark CPET instrument and our proposed model, with a high coefficient of determination (R2 ≈ 0.90). The correlation model is worth mentioning because it coincides with our hypothesis, with at least 95% overall accuracy and less than 2% uncertainty under each condition. Second, the most remarkable finding is that our model is exceedingly suitable (R2 ≈ 0.90) for the same person, regardless of the experimental temperature. Finally, validation is conducted in a wider metabolic range, further strengthening confidence in our metabolic rate estimation approach. In summary, based on an innovative methodology, our novel metabolic rate sensor is wearable, comfortable, real-time achievable, and miniaturized compared with the existing equipment. This paper sheds new light on human metabolic rate measurement and prediction. Furthermore, our approach and designed sensor can be applied to evaluate indoor thermal comfort precisely, thus leading to reduced energy consumption.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Temperatura
4.
Med Biol Eng Comput ; 61(11): 3103-3121, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37656332

RESUMEN

To meet the clinical status of the wide application of percutaneous mechanical circulatory support, this paper selects the mixed flow blood pump applied with superhydrophobic surface as the research object. The Navier slip model was used to simulate the slip characteristics of superhydrophobic surface, and the effects of the blade wrap angle and the superhydrophobic surface on the performance of the mixed flow blood pump are studied by numerical simulation. The results show that (1) considering the head, hydraulic efficiency, and hemolysis index of the blood pump, the optimal value of the blade wrap angle of the mixed flow blood pump in this paper is 60°. (2) The hydraulic efficiency of the blood pump with superhydrophobic surface is improved, and the maximum growth rate is about 13.9%; superhydrophobic surface can reduce the hemolysis index of blood pump under various working conditions, and the maximum reduction rate of hemolysis index of blood pump is 22.9%. (3) The variation trends of blood pump head, hydraulic efficiency, and hemolysis index with the increased rotating speed before and after setting superhydrophobic slip boundary conditions are the same as their original variation trends.


Asunto(s)
Corazón Auxiliar , Humanos , Diseño de Equipo , Hemólisis , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas
5.
ACS Appl Mater Interfaces ; 15(19): 23844-23859, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37130321

RESUMEN

Wettability patterning is a promising method to manipulate bubble dynamics in microscale boiling systems, allowing the transfer of large heat fluxes at low wall temperatures. Herein, we experimentally investigate the enhancement of flow boiling through exploitation of contact-line pinning using superbiphilic wettability patterns with a range of geometries and orientations. We compare the boiling performance on symmetrical (i.e., circular, square, and diamond-shaped) and asymmetrical (i.e., triangular) superhydrophobic patches and also create rings and chevrons through insertion of self-similar, recursive superhydrophilic cut-outs. Two main principles for boiling heat transfer enhancement are demonstrated: first, the ease of bubble departure from the superhydrophobic patches is shown to depend upon the interaction between the local contact angle and the bubble's tilt due to hydrodynamic drag; second, we find that ring-shaped superhydrophobic patches may trap droplets inside the forming bubbles, thus supplementing the heat transfer coefficient and critical heat flux through latent heat. Through application of these principles, the heat transfer coefficient and critical heat flux of heterogeneous surfaces was enhanced over the homogeneous analogues by 62% and 24%, respectively. Finally, we establish and validate a general model to estimate the ease of bubble departure through the use of geometric arguments.

6.
Langmuir ; 39(8): 3083-3093, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802613

RESUMEN

Roughness on hydrophilic surfaces allows for fast propagation of liquids. In this paper, the hypothesis is tested which theorizes that pillar array structures with nonuniform pillar height levels can enhance wicking rates. In this work, within a unit cell, nonuniform micropillars were arranged with one pillar at constant height, while other shorter pillars were varied in height to study these nonuniform effects. Subsequently, a new microfabrication technique was developed to fabricate a nonuniform pillar array surface. Capillary rising-rate experiments were conducted with water, decane, and ethylene glycol as working liquids to determine the behavior of propagation coefficients that were dependent on pillar morphology. It is found that a nonuniform pillar height structure leads to a separation of layers in the liquid spreading process and the propagation coefficient increases with declining micropillar height for all liquids tested. This indicated a significant enhancement of wicking rates compared to uniform pillar arrays. A theoretical model was subsequently developed to explain and predict the enhancement effect by considering capillary force and viscous resistance of nonuniform pillar structures. The insights and implications from this model thus advance our understanding of the physics of the wicking process and can inform the design of pillar structures with an enhanced wicking propagation coefficient.

7.
Nano Lett ; 22(21): 8487-8494, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36260314

RESUMEN

Flow boiling is a promising method for the cooling of sensitive computational and industrial components, facilitating the transportation of large quantities of heat at near-constant temperature and in a small form factor. The prevention of vapor film formation is a fundamental challenge for the enhancement of boiling systems, and an impetus therefore exists for the discovery of new techniques to segregate nucleating bubbles during their formation. Herein, we utilize the strong capillary forces generated by nanostructures to pin the liquid/vapor interface in three dimensions and thereby control the coalescence and flow interactions of developing bubbles. We demonstrate this principle on both symmetrical and asymmetrical superbiphilic microstructures, showing enhancement of peak heat transfer coefficient by 81% and 113%, respectively, when compared to the best superhydrophilic and superhydrophobic analogues. Our approach shows a potential future direction for engineered boiling micro/nanostructures, wherein bubble dynamics are directly manipulated on bespoke, three-dimensional substrates.

8.
Int J Artif Organs ; 45(12): 1028-1036, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36028949

RESUMEN

AIM: In order to reduce the blood damage of an artificial heart pump and optimize its hydraulic performance, a centrifugal blood pump with superhydrophobic characteristics is proposed in this study. METHODS: To study the influence of superhydrophobic surface characteristics on the performance of centrifugal blood pumps, the Navier slip model is used to simulate the slip characteristics of superhydrophobic surfaces, which is realized by the user defined function of ANSYS fluent. The user defined functions with different values of slip length are verified by two benchmark solutions of laminar flow and turbulence in the pipeline. The blood pump model adopts the designed centrifugal blood pump, and its head, hydraulic efficiency and hemolysis index are calculated. The Navier slip boundary condition (a constant slip-length of 50 µm) is applied to the walls of the blood pump impeller and a volute at different positions, and the influence of the superhydrophobic surface on the performance of the blood pump at the design point Q = 6 L/min was compared and analyzed. RESULTS: The results show that the centrifugal blood pump model used in this paper has good blood compatibility and meets the design requirements; the superhydrophobic surface can significantly reduce the scalar shear stress in the blood pump. At the design point, when the slip length is 50 µm, the mass-average scalar shear stress in the impeller area and the volute area reduction rate is about 5.9%, the hydraulic efficiency growth rate is about 3.8%, the hemolysis index reduction rate is about 18.4%, and the pressure head changes little with a growth rate of 0.3%. CONCLUSIONS: Centrifugal blood pumps with superhydrophobic surfaces can improve the efficiency of blood pumps and reduce hemolysis. Based on these encouraging results, vitro investigations for actual blood damage would be practicable.


Asunto(s)
Corazón Auxiliar , Hemólisis , Humanos , Estrés Mecánico , Interacciones Hidrofóbicas e Hidrofílicas , Diseño de Equipo
9.
Langmuir ; 38(20): 6395-6403, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35544411

RESUMEN

Surface modification, such as hydrophobic network modification, is very promising technology to control droplet dynamics, heat transfer, and evaporation. However, fundamental mechanisms of how these chemically patterned surfaces affect the droplet evaporation dynamics and predictions of evaporation rates are still lacking. In the present work, we systematically investigated the full process of droplet evaporation dynamics on hydrophobic network surfaces and distinguished four different stages: constant contact line (CCL) stage, constant contact angle (CCA) stage, pattern-pinning (PP) stage, and moving contact line (MCL) stage. We further developed a general model considering the pinning and depinning forces to accurately predict the evaporation transition from PP to MCL stages (i.e., critical receding contact angle, θcr). As for the influence of the chemically patterned surface on the evaporation rate, a corrected contact line length was considered and combined with the well-known Rowan and Erbil's models. Finally, a general model was thus proposed and showed successful predictions for the evaporation durations of each stage.

10.
J Exp Biol ; 221(Pt 19)2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30108128

RESUMEN

We investigated the characteristics of interwing aerodynamic interactions across the span of the high aspect ratio, flexible wings of dragonflies under tethered and free-flying conditions. This revealed that the effects of the interactions on the hindwings vary across four spanwise regions. (i) Close to the wing root, a trailing-edge vortex (TEV) is formed by each stroke, while the formation of a leading-edge vortex (LEV) is limited by the short translational distance of the hindwing and suppressed by the forewing-induced flow. (ii) In the region away from the wing root but not quite up to midspan, the formation of the hindwing LEV is influenced by that of the forewing LEV. This vortex synergy can increase the circulation of the hindwing LEV in the corresponding cross-section by 22% versus that of the hindwing in isolation. (iii) In the region about half-way between the wing root and wing tip there is a transition dominated by downwash from the forewing resulting in flow attached to the hindwing. (iv) A LEV is developed in the remaining, outer region of the wing at the end of a stroke when the hindwing captures the vortex shed by the forewing. The interaction effects depend not only on the wing phasing but also on the flapping offset and flight direction. The aerodynamics of the hindwings vary substantially from the wing root to the wing tip. For a given phasing, this spanwise variation in the aerodynamics can be exploited in the design of artificial wings to achieve greater agility and higher efficiency.


Asunto(s)
Vuelo Animal , Odonata/fisiología , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Modelos Biológicos
11.
Bioinspir Biomim ; 13(3): 036001, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29372888

RESUMEN

In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α = 45°. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re = 5.3 × 103. Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5-10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings.


Asunto(s)
Vuelo Animal/fisiología , Modelos Biológicos , Alas de Animales/fisiología , Animales , Mimetismo Biológico , Fenómenos Biomecánicos , Adaptabilidad/fisiología , Simulación por Computador , Insectos/anatomía & histología , Insectos/fisiología , Alas de Animales/anatomía & histología
12.
Lab Chip ; 17(20): 3504-3513, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28933795

RESUMEN

Liquid perfluorocarbon (PFC) nanodroplets may have a better chance to extravasate through inter-endothelial gaps (400-800 nm) into tumor interstitium for extravascular imaging, which holds promise as an innovative strategy for imaging-guided drug delivery, early diagnosis of cancer and minimally invasive treatment of cancer. Currently available emulsion technologies still face challenges in reducing droplet sizes from the microscale to the nanoscale. To control size and ensure monodispersity of PFC nanodroplets, we developed a flame-shaped glass capillary and polydimethylsiloxane (PDMS) hybrid device that creates a concentric flow of the dispersed phase enclosed by the focusing continuous phase at the cross-junction. Through adjustment of the pressure applied, a stable tip-streaming mode can be obtained for PFC nanodroplet generation. Using this device, we synthesized various kinds of PFC nanodroplets as small as 200 nm in diameter with polydispersity index (PDI) <0.04. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were carried out for the characterization of the PFC nanodroplets. Finally, ultrasound imaging was conducted to demonstrate that the liquid PFC nanodroplets can be used for enhancing the ultrasound contrast upon vaporization.

13.
ACS Appl Mater Interfaces ; 9(34): 29157-29166, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28770601

RESUMEN

In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 µL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

14.
Sci Rep ; 7: 41897, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28157229

RESUMEN

The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface.

15.
Anal Chem ; 88(10): 5197-204, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27094711

RESUMEN

We present a novel plasmapheresis device designed for a fully integrated point-of-care blood analysis microsystem. In the device, fluidic microchannels exhibit a characteristic cross-sectional profile arising from distinct three-dimensional (3D) microelectrodes featuring sidewall undercuts readily integrated through a single-mask process. The structure leverages mainly electrothermal convective rolls that efficiently manifest themselves in physiological fluids and yet have received inadequate attention for the application of plasmapheresis due to concerns over Joule heating. Using this device, we show that such convective rolls not only lead to plasma extraction at a high yield and purity but also deliver plasma at an acceptable quality with no evidence of hemolytic stress or protein denaturation. Specifically, plasma from 1.5 µL of whole blood diluted to 4% hematocrit in a high-conductivity buffer (1.5 S/m) is extracted in a continuous flow at a fraction of 70% by using a peak voltage of ±10 Vp applied at 650 kHz; the extracted plasma is nearly 99% pure, as shown by a rigorous assessment using flow cytometry. The plasmas obtained using this device and using conventional centrifugation and sedimentation are of comparable quality as revealed by absorbance and circular dichroism spectra despite thermal gradients; however, these gradients effectively drive electrothermal bulk flows, as assessed using the microparticle image velocity technique. The device achieves high target molecule recovery efficiency, delivering about 97% of the proteins detected in the plasma obtained using sedimentation. The utility of the extracted plasma is further validated based on the detection of prostate-specific antigen at clinically relevant levels.


Asunto(s)
Biomarcadores de Tumor/sangre , Microelectrodos , Técnicas Analíticas Microfluídicas/instrumentación , Plasmaféresis/instrumentación , Antígeno Prostático Específico/sangre , Calefacción , Humanos , Dispositivos Laboratorio en un Chip
16.
Sci Rep ; 4: 7123, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25410022

RESUMEN

The coalescence process of oppositely charged drops for different electrical conductivities of liquids is presented. When the electrical conductivity was relatively low, oppositely charged drops failed to coalesce under sufficiently high electrical fields and capillary ripples were formed on the surfaces of droplets after rebound. For a high electrically conductive liquid, it was found that a crown profile of drop fission always appeared on the top surface of negatively charged drops after the two charged drops contacted and bounced off. Furthermore, we report here, for the first time, the newly found phenomenon and argue that the break up might be caused by Rayleigh instability, a form of Coulomb fission. The different mobility of positive and negative ions is the underlying mechanism that explains why the break up always happened on the negative side of charged drops.

17.
Rev Sci Instrum ; 82(5): 055104, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21639535

RESUMEN

A 2D fringe probing transient temperature measurement technique based on photothermal deflection theory was developed. It utilizes material's refractive index dependence on temperature gradient to obtain temperature information from laser deflection. Instead of single beam, this method applies multiple laser beams to obtain 2D temperature information. The laser fringe was generated with a Mach-Zehnder interferometer. A transient heating experiment was conducted using an electric wire to demonstrate this technique. Temperature field around a heating wire and variation with time was obtained utilizing the scattering fringe patterns. This technique provides non-invasive 2D temperature measurements with spatial and temporal resolutions of 3.5 µm and 4 ms, respectively. It is possible to achieve temporal resolution to 500 µs utilizing the existing high speed camera.


Asunto(s)
Interferometría/instrumentación , Temperatura , Imagenología Tridimensional , Rayos Láser , Reproducibilidad de los Resultados , Acero , Factores de Tiempo
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 2): 066310, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22304193

RESUMEN

Local control of droplet formation with acoustic actuation in a microfluidic flow-focusing device is investigated, and the effects of acoustic voltage, frequency, flow-rate ratio, fluid viscosity, and flow vorticity are characterized. Acoustic actuation is provided to affect droplet breakup in the squeezing regime by imposing periodic oscillation to the fluid-fluid interface and, therefore, a periodic change in its curvature at the cross-junction of the device. Time reduction is observed for the three key stages of droplet breakup in the squeezing regime: dispersed phase flow-front advancement into the orifice, pressure buildup upstream and within the orifice together with liquid inflation downstream, and finally the thinning and pinch-off of the liquid thread. It is found that acoustic actuation has less of an effect on droplet size for the continuous phase with a higher viscosity due to the restrained interfacial vibration under a high shear stress environment. Periodic velocity flow fields within the dispersed phase at different phases of one oscillation cycle are calculated based on the results from phase-averaged microresolution-particle-image velocimetry (µPIV). The oscillation paths for the points of maximum vorticities of phase-averaged velocity components are traced, which reveals that the motion is mainly along the y direction.

19.
Appl Opt ; 44(22): 4648-53, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16075876

RESUMEN

An optical diagnostic technique has been developed to measure the gas-liquid interfacial film thickness in microcapillary two-phase flows. The spatial frequencies from the multiscattering measured with a CCD camera are used to determine the slug diameter and film thickness. It is found that, with an optimized optical orientation angle, the spatial frequency method shows great accuracy in the measurements. To demonstrate the capability of the newly developed method, a validation experiment was conducted in water-air and water-honey mixture-air two-phase flows. We measured the spatial frequency variations when the microbubble and slug were pulsating by utilizing a highly accurate signal processing technique and a five-point interpolation method. This newly developed optical method is easy to implement, and it will be a useful technique for two-phase flow measurements.

20.
J Opt Soc Am A Opt Image Sci Vis ; 20(4): 690-7, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12683496

RESUMEN

Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...