Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17985, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863933

RESUMEN

In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Podocitos/metabolismo , Nefropatías Diabéticas/patología , Glomérulos Renales/patología , Células Endoteliales/metabolismo , Óxido de Magnesio/farmacología , Diabetes Mellitus Experimental/metabolismo , Transducción de Señal , Ratones Endogámicos , Glucosa/metabolismo , Apoptosis
2.
Front Pharmacol ; 13: 899057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873562

RESUMEN

Introduction: Genetic studies have identified associations of carnosinase 1 (CN1) polymorphisms with diabetic kidney disease (DKD). However, CN1 levels and activities have not been assessed as diagnostic or prognostic markers of DKD in cohorts of patients with type 2 diabetes (T2D). Methods: We established high-throughput, automated CN1 activity and concentration assays using robotic systems. Using these methods, we determined baseline serum CN1 levels and activity in a T2D cohort with 970 patients with no or only mild renal impairment. The patients were followed for a mean of 1.2 years. Baseline serum CN1 concentration and activity were assessed as predictors of renal function impairment and incident albuminuria during follow up. Results: CN1 concentration was significantly associated with age, gender and estimated glomerular filtration rate (eGFR) at baseline. CN1 activity was significantly associated with glycated hemoglobin A1c (HbA1c) and eGFR. Serum CN1 at baseline was associated with eGFR decline and predicted renal function impairment and incident albuminuria during the follow-up. Discussion: Baseline serum CN1 levels were associated with presence and progression of renal function decline in a cohort of T2D patients. Confirmation in larger cohorts with longer follow-up observation periods will be required to fully establish CN1 as a biomarker of DKD.

3.
Am J Physiol Renal Physiol ; 323(1): F69-F80, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635322

RESUMEN

Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Two cohorts of mice including appropriate controls were studied: i.e., diabetic mice that received oral carnosine supplementation (cohort 1) and human (h)CN1 transgenic (TG) diabetic mice (cohort 2). The lumen area ratio (LAR) of the afferent arterioles and glomerular parameters were measured by conventional histology. Three-dimensional analysis using a tissue clearing strategy was also used. In both cohorts, LAR was significantly larger in diabetic BTBRob/ob versus nondiabetic BTBRwt/ob mice (0.41 ± 0.05 vs. 0.26 ± 0.07, P < 0.0001 and 0.42 ± 0.06 vs. 0.29 ± 0.04, P < 0.0001) and associated with glomerular size (cohort 1: r = 0.55, P = 0.001 and cohort 2: r = 0.89, P < 0.0001). LAR was partially normalized by oral carnosine supplementation (0.34 ± 0.05 vs. 0.41 ± 0.05, P = 0.004) but did not differ between hCN1 TG and wild-type BTBRob/ob mice. In hCN1 TG mice, serum CN1 concentrations correlated with LAR (r = 0.90, P = 0.006). Diabetic mice displayed decreased nephrin expression and increased glomerular hypertrophy. This was not significantly different in hCN1 TG BTBRob/ob mice (P = 0.06 and P = 0.08, respectively). In conclusion, carnosine and CN1 may affect intraglomerular pressure in an opposing manner through the regulation of afferent arteriolar tone. This study corroborates previous findings on the role of carnosine in the progression of DKD.NEW & NOTEWORTHY Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Our results provide evidence that carnosine feeding and CN1 overexpression likely affect intraglomerular pressure through vasoregulation of the afferent arteriole.


Asunto(s)
Carnosina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Arteriolas/metabolismo , Carnosina/metabolismo , Carnosina/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Dipeptidasas , Humanos , Hipertrofia , Ratones , Ratones Endogámicos , Ratones Transgénicos , Vasodilatación
4.
Clin J Am Soc Nephrol ; 17(4): 507-517, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314480

RESUMEN

BACKGROUND AND OBJECTIVES: The vasopressin V2 receptor antagonist tolvaptan is the only drug that has been proven to be nephroprotective in autosomal dominant polycystic kidney disease (ADPKD). Tolvaptan also causes polyuria, limiting tolerability. We hypothesized that cotreatment with hydrochlorothiazide or metformin may ameliorate this side effect. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We performed a clinical study and an animal study. In a randomized, controlled, double-blind, crossover trial, we included 13 tolvaptan-treated patients with ADPKD. Patients were treated for three 2-week periods with hydrochlorothiazide, metformin, or placebo in random order. Primary outcome was change in 24-hour urine volume. We also measured GFR and a range of metabolic and kidney injury markers. RESULTS: Patients (age 45±8 years, 54% women, measured GFR of 55±11 ml/min per 1.73 m2) had a baseline urine volume on tolvaptan of 6.9±1.4 L/24 h. Urine volume decreased to 5.1 L/24 h (P<0.001) with hydrochlorothiazide and to 5.4 L/24 h (P<0.001) on metformin. During hydrochlorothiazide treatment, plasma copeptin (surrogate for vasopressin) decreased, quality of life improved, and several markers of kidney damage and glucose metabolism improved. Metformin did not induce changes in these markers or in quality of life. Given these results, the effect of adding hydrochlorothiazide to tolvaptan was investigated on long-term kidney outcome in an animal experiment. Water intake in tolvaptan-hydrochlorothiazide cotreated mice was 35% lower than in mice treated with tolvaptan only. Combination treatment was superior to "no treatment" on markers of disease progression (kidney weight, P=0.003 and cystic index, P=0.04) and superior or equal to tolvaptan alone. CONCLUSIONS: Both metformin and hydrochlorothiazide reduced tolvaptan-caused polyuria in a short-term study. Hydrochlorothiazide also reduced polyuria in a long-term animal model without negatively affecting nephroprotection. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_03_21_CJN11260821.mp3.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas , Hidroclorotiazida , Riñón , Metformina , Riñón Poliquístico Autosómico Dominante , Poliuria , Adulto , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/efectos adversos , Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Estudios Cruzados , Femenino , Humanos , Hidroclorotiazida/farmacología , Hidroclorotiazida/uso terapéutico , Riñón/efectos de los fármacos , Riñón/fisiopatología , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Poliuria/inducido químicamente , Poliuria/prevención & control , Calidad de Vida , Receptores de Vasopresinas/uso terapéutico , Tolvaptán/efectos adversos , Tolvaptán/uso terapéutico , Resultado del Tratamiento
5.
J Mol Med (Berl) ; 98(9): 1333-1346, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32803273

RESUMEN

OBJECTIVE: To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). METHODS: hCN1 transgenic (TG) mice were generated in a BTBROb/Ob genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum CN1 expression on obesity, hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG BTBROb/Ob mice leads to changes in the renal transcriptome as compared with wild-type BTBROb/Ob mice. RESULTS: hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBROb/Ob mice displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-creatinine ratios (1104 ± 696 vs 492.1 ± 282.2 µg/mg) accompanied by an increased glomerular tuft area and renal corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBROb/Wt, BTBROb/Ob, and hCN1 BTBROb/Ob mice. Along with aggravation of the DKD phenotype, 26 altered genes have been found in obese hCN1 transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome proliferator-activated receptor-alpha have been reported to play essential roles in DKD. CONCLUSIONS: Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the changes in renal carnosine concentrations warrants further studies. KEY MESSAGES: Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD). BTBROb/Ob mice with human CN1 develop a more aggravated DKD phenotype. Microarray revealed alterations by CN1 which are not altered by hyperglycemia. These genes have been described to play essential roles in DKD. Inhibiting CN1 could be beneficial in DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas/etiología , Dipeptidasas/genética , Expresión Génica , Animales , Biomarcadores , Biología Computacional/métodos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Dipeptidasas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Obesos , Ratones Transgénicos
6.
Ther Adv Endocrinol Metab ; 11: 2042018820980240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33447354

RESUMEN

BACKGROUND: Among persons with type 1 diabetes mellitus (T1DM) low concentrations of magnesium have been reported. Previous (small) studies also suggested a relation of hypomagnesemia with (poor) glycaemic control and complications. We aimed to investigate the magnitude of hypomagnesemia and the associations between magnesium with parameters of routine T1DM care in a population of unselected outpatients. METHODS: As part of a prospective cohort study, initially designed to measure quality of life and oxidative stress, data from 207 patients with a mean age of 45 [standard deviation (SD) 12] years, 58% male, diabetes duration 22 [interquartile range (IQR) 16, 31] years and glycated haemoglobin (HbA1c) of 60 (SD 11) mmol/mol [7.6 (SD 1.0)%] were examined. Hypomagnesemia was defined as a concentration below <0.7 mmol/l. RESULTS: Mean magnesium concentration was 0.78 (SD 0.05) mmol/l. A deficiency was present in 4.3% of participants. Among these persons, mean concentration was 0.66 (SD 0.03) mmol/l. There was no correlation between magnesium and HbA1c at baseline (r = -0.014, p = 0.843). In multivariable analysis, free thiols (reflecting the degree of oxidative stress) were significantly and negatively associated with magnesium concentrations. CONCLUSION: In this cohort of T1DM outpatients, the presence of hypomagnesemia was infrequent and, if present, relative mild. Magnesium was not associated with glycaemic control nor with presence of micro- and macrovascular complications. Although these results need confirmation, in particular the negative association of magnesium with free thiols, this suggests that hypomagnesemia is not a relevant topic in routine care for people with T1DM.

7.
Amino Acids ; 51(4): 611-617, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30610469

RESUMEN

This study assessed if serum carnosinase (CNDP1) activity and concentration in patients with type 2 diabetes mellitus (T2D) with diabetic nephropathy (DN) differs from those without nephropathy. In a cross-sectional design 127 patients with T2D with DN ((CTG)5 homozygous patients n = 45) and 145 patients with T2D without nephropathy ((CTG)5 homozygous patients n = 47) were recruited. Univariate and multivariate regression analyses were performed to predict factors relevant for serum CNDP1 concentration. CNDP1 (CTG)5 homozygous patients with T2D with DN had significantly lower CNDP1 concentrations (30.4 ± 18.3 vs 51.2 ± 17.6 µg/ml, p < 0.05) and activity (1.25 ± 0.5 vs 2.53 ± 1.1 µmol/ml/h, p < 0.05) than those without nephropathy. This applied for patients with DN on the whole, irrespective of (CTG)5 homozygosity. In the multivariate regression analyses, lower serum CNDP1 concentrations correlated with impaired renal function and to a lesser extend with the CNDP1 genotype (95% CI of regression coefficients: eGFR: 0.10-1.94 (p = 0.001); genotype: - 0.05 to 5.79 (p = 0.055)). Our study demonstrates that serum CNDP1 concentrations associate with CNDP1 genotype and renal function in patients with T2D. Our data warrant further studies using large cohorts to confirm these findings and to delineate the correlation between low serum CNDP1 concentrations and renal function deterioration in patients with T2D.


Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Dipeptidasas/genética , Dipeptidasas/metabolismo , Polimorfismo de Nucleótido Simple , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Nefropatías Diabéticas/patología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
8.
J Diabetes Res ; 2019: 6850628, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31950064

RESUMEN

BACKGROUND: Carnosinase-1 (CN-1) can be detected in 24 h urine of healthy individuals and patients with type 2 diabetes (T2DM). We aimed to assess whether urinary CN-1 is also reliably measured in spot urine and investigated its association with renal function and the albumin/creatinine ratio (ACR). We also assessed associations between the CNDP1 (CTG) n genotype and CN-1 concentrations in serum and urine. METHODS: Patients with T2DM (n = 85) and nondiabetic patients with chronic kidney disease (CKD) (n = 26) stratified by albuminuria (ACR ≤ 300 mg/g or ACR > 300 mg/g) recruited from the nephrology clinic and healthy subjects (n = 24) were studied. RESULTS: Urinary CN-1 was more frequently detected and displayed higher concentrations in patients with ACR > 300 mg/g as compared to those with ACR ≤ 300 mg/g irrespective of the baseline disease (T2DM: 554 ng/ml [IQR 212-934 ng/ml] vs. 31 ng/ml [IQR 31-63 ng/ml] (p < 0.0001) and nondiabetic CKD: 197 ng/ml [IQR 112-739] vs. 31 ng/ml [IQR 31-226 ng/ml] (p = 0.015)). A positive correlation between urinary CN-1 and ACR was found (r = 0.68, p < 0.0001). Multivariate linear regression analysis revealed that ACR and serum CN-1 concentrations but not eGFR or the CNDP1 genotype are independent predictors of urinary CN-1, explaining 47% of variation of urinary CN-1 concentrations (R 2 = 0.47, p < 0.0001). CONCLUSION: These results confirm and extend previous findings on urinary CN-1 concentrations, suggesting that assessment of CN-1 in spot urine is as reliable as in 24 h urine and may indicate that urinary CN-1 in macroalbuminuric patients is primarily serum-derived and not locally produced.


Asunto(s)
Albuminuria/orina , Nefropatías Diabéticas/metabolismo , Dipeptidasas/genética , Dipeptidasas/orina , Insuficiencia Renal Crónica/metabolismo , Anciano , Creatinina/sangre , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidasas/sangre , Femenino , Genotipo , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Albúmina Sérica/análisis
9.
Amino Acids ; 51(1): 7-16, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29922921

RESUMEN

Carnosinase 1 (CN1) has been postulated to be a susceptibility factor for developing diabetic nephropathy (DN). Although its major substrate, carnosine, is beneficial in rodent models of DN, translation of these findings to humans has been hampered by high CN1 activity in human serum resulting in rapid degradation of carnosine. To overcome this hurdle, we screened a protease-directed small-molecule library for inhibitors of human recombinant CN1. We identified SAN9812 as a potent and highly selective inhibitor of CN1 activity with a Ki of 11 nM. It also inhibited CN1 activity in human serum and serum of transgenic mice-overexpressing human CN1. Subcutaneous administration of 30 mg/kg SAN9812 led to a sustained reduction in circulating CN1 activity in human CN1 transgenic (TG) mice. Simultaneous administration of carnosine and SAN9812 increased carnosine levels in plasma and kidney by up to 100-fold compared to treatment-naïve CN1-overexpressing mice. To our knowledge, this is the first study reporting on a potent and selective CN1 inhibitor with in vivo activity. SAN9812, also called carnostatine, may be used to increase renal carnosine concentration as a potential therapeutic modality for renal diseases linked to glycoxidative conditions.


Asunto(s)
Carnosina/administración & dosificación , Dipeptidasas/antagonistas & inhibidores , Descubrimiento de Drogas , Imidazoles/farmacología , Propionatos/farmacología , Inhibidores de Proteasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Adulto , Animales , Carnosina/sangre , Dipeptidasas/sangre , Dipeptidasas/genética , Femenino , Expresión Génica , Humanos , Imidazoles/química , Inyecciones Subcutáneas , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Propionatos/química , Inhibidores de Proteasas/química , Unión Proteica , Proteínas Recombinantes/sangre , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequeñas/química , Transgenes
10.
Amino Acids ; 51(1): 17-25, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29961141

RESUMEN

Low serum carnosinase (CN-1) concentrations are associated with low risk for development of diabetic nephropathy (DN) in patients with type 2 diabetes (T2D). Although CN-1 is expressed in the kidney, urinary CN-1 (CNU) excretion and its pathological relevance in patients with T2D have not been investigated to date. The present study therefore assessed the extent of CNU excretion in healthy subjects (n = 243) and in patients with T2D (n = 361) enrolled in the DIAbetes and LifEstyle Cohort Twente-1 (DIALECT-1) in relation to functional renal parameters. CNU was detected in a high proportion of healthy individuals, 180 (74%); median CNU excretion was 0.25 mg/24 h [(IQR 0-0.65 mg/24 h]. In patients with T2D the prevalence and extent of CNU increased in parallel with albuminuria (r = 0.59, p < 0.0001; median CNU 0.1 vs 0.2 vs 1.5 mg/24 h, p < 0.0001; prevalence of CNU 61 vs. 81 vs. 97% p < 0.05 in normo- (n = 241), micro- (n = 80) and macroalbuminuria (n = 40), respectively). Patients with estimated glomerular filtration rate (eGFR) < 30 ml/min/1.73 m2 displayed higher median CNU excretion rates in comparison to patients with preserved eGFR (> 90 ml/min/1.73 m2) (1.36 vs 0.13 mg/24 h, p < 0.05). Backward stepwise multivariate linear regression analysis revealed albuminuria, eGFR and glycosuria to be independent factors of CNU excretion rates, all together explaining 37% of variation of CNU excretion rates (R2 = 0.37, p < 0.0001). These results show for the first time that CN-1 can be detected in urine and warrants prospective studies to assess the relevance of CNU for renal function deterioration in diabetes patients.


Asunto(s)
Albuminuria/orina , Diabetes Mellitus Tipo 2/orina , Dipeptidasas/orina , Riñón/fisiopatología , Anciano , Anciano de 80 o más Años , Animales , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Voluntarios Sanos , Humanos , Modelos Lineales , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad
11.
Polymers (Basel) ; 10(5)2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-30966554

RESUMEN

Free radicals play a negative role during the thermal degradation of silicone rubber (SR). Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS) with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T5 (temperature at 5% weight loss) of SR/Zr-POSS significantly increased by 31.7 °C when compared to the unmodified SR. Notably, after aging 12 h at 280 °C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains.

12.
J Diabetes Res ; 2017: 9506730, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553654

RESUMEN

Considering that the homozygous CNDP1 (CTG)5 genotype affords protection against diabetic nephropathy (DN) in female patients with type 2 diabetes, this study assessed if this association remains gender-specific when applying clinical inclusion criteria (CIC-DN) or biopsy proof (BP-DN). Additionally, it assessed if the prevalence of the protective genotype changes with diabetes duration and time on hemodialysis and if this occurs in association with serum carnosinase (CN-1) activity. Whereas the distribution of the (CTG)5 homozygous genotype in the no-DN and CIC-DN patients was comparable, a lower frequency was found in the BP-DN patients, particularly in females. We observed a significant trend towards high frequencies of the (CTG)5 homozygous genotype with increased time on dialysis. This was also observed for diabetes duration but only reached significance when both (CTG)5 homo- and heterozygous patients were included. CN-1 activity negatively correlated with time on hemodialysis and was lower in (CTG)5 homozygous patients. The latter remained significant in female subjects after gender stratification. We confirm the association between the CNDP1 genotype and DN to be likely gender-specific. Although our data also suggest that (CTG)5 homozygous patients may have a survival advantage on dialysis and in diabetes, this hypothesis needs to be confirmed in a prospective cohort study.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/genética , Dipeptidasas/genética , Fallo Renal Crónico/genética , Anciano , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/terapia , Dipeptidasas/sangre , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Fallo Renal Crónico/etiología , Fallo Renal Crónico/patología , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo Genético , Diálisis Renal , Estudios Retrospectivos , Factores de Tiempo
13.
Sci Rep ; 7: 44492, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281693

RESUMEN

We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes.


Asunto(s)
Albuminuria/dietoterapia , Carnosina/farmacología , Diabetes Mellitus Tipo 2/dietoterapia , Nefropatías Diabéticas/dietoterapia , Hipoglucemiantes/farmacología , Administración Oral , Albuminuria/sangre , Albuminuria/genética , Albuminuria/patología , Animales , Glucemia/metabolismo , Péptido C/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Dipeptidasas/genética , Dipeptidasas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Mesangio Glomerular/efectos de los fármacos , Hemoglobina Glucada/genética , Hemoglobina Glucada/metabolismo , Humanos , Insulina/sangre , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Ratones , Ratones Obesos , Tamaño de los Órganos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA