Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 212: 108761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805756

RESUMEN

Abnormal pollination from chance events or hybridization between species leads to unusual embryo development, resulting in fruit abortion. To elucidate the mechanism underlying fruit abortion, we conducted a comprehensive analysis of the transcriptome and hormone profiles in aborting fruits (AF) derived from an interspecific cross between the peach cultivar 'Huangjinmi 3' and the Prunus mume cultivar 'Jiangmei', as well as in normal-seeded fruits (NF) resulting from an intraspecific cross of 'Huangjinmi 3' with the 'Manyuanhong' peach cultivars. Growth of AF was inhibited during the exponential growth phase, with up-regulation of oxidative stress related genes and down-regulation of DNA replication and cell cycle genes. Accumulation of the tissue growth-related hormones auxin and cytokinin was reduced in AF, while levels of the growth inhibiting hormone abscisic acid (ABA) were higher compared to NF. The increased ABA concentration aligned with down-regulation of the ABA catabolism gene CYP707A2, which encodes abscisic acid 8'-hydroxylase. Correlation analysis showed ABA could explain the maximum proportion of differently expressed genes between NF and AF. We also showed that expression of KIRA1-LIKE1 (PpeKIL1), a peach ortholog of the Arabidopsis KIRA1 gene, was up-regulated in AF. PpeKIL1 promotes senescence or delays normal growth in tobacco and Arabidopsis, and its promoter activity increases with exogenous ABA treatment. Our study demonstrates a candidate mechanism where ABA induces expression of PpeKIL1, which further blocks normal fruit growth and triggers fruit abscission.


Asunto(s)
Ácido Abscísico , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus persica , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Plants (Basel) ; 11(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36365452

RESUMEN

The plant calcineurin B-like protein-CBL interacting protein kinase (CBL-CIPK) signaling pathway is a Ca2+-related signaling pathway that responds strongly to both biological and abiotic environmental stimuli. This study identified eight CBL and eighteen CIPK genes from peach for the first time. Their basic properties and gene structure were analyzed, and the CBL and CIPK members from Arabidopsis and apple were combined to study their evolutionary relationships. Using RT-qPCR and RNA-seq data, we detected the expression patterns of PprCBLs and PprCIPKs in different tissues and fruit development stages of peach. Among them, the expression levels of PprCBL1 and PprCIPK18 were stable in various tissues and stages. The expression patterns of other members showed specificity between cultivars and developmental stages. By treating shoots with drought and salt stress simulated using PEG6000 and NaCl, it was found that PprCIPK3, PprCIPK6, PprCIPK15 and PprCIPK16 were strongly responsive to salt stress, and PprCIPK3, PprCIPK4, PprCIPK10, PprCIPK14, PprCIPK15, PprCIPK16 and PprCIPK18 were sensitive to drought stress. Three genes, PprCIPK3, PprCIPK15 and PprCIPK16, were sensitive to both salt and drought stress. We cloned four PprCBL and several PprCIPK genes and detected their interaction by yeast two-hybrid assay (Y2H). The results of Y2H show not only the evolutionary conservation of the interaction network of CBL-CIPK but also the specificity among different species. In conclusion, CBL and CIPK genes are important in peach and play an important role in the response to various abiotic stresses.

4.
Sci Rep ; 12(1): 11044, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773470

RESUMEN

LncRNAs represent a class of RNA transcripts of more than 200 nucleotides (nt) in length without discernible protein-coding potential. The expression levels of lncRNAs are significantly affected by stress or developmental cues. Recent studies have shown that lncRNAs participate in fruit development and ripening processes in tomato and strawberry; however, in other fleshy fruits, the association between lncRNAs and fruit ripening remains largely elusive. Here, we constructed 9 ssRNA-Seq libraries from three different peach (Prunus persica) fruit developmental stages comprising the first and second exponential stages and the fruit-ripening stage. In total, 1500 confident lncRNAs from 887 loci were obtained according to the bioinformatics analysis. The lncRNAs identified in peach fruits showed distinct characteristics compared with protein-coding mRNAs, including lower expression levels, lower complexity of alternative splicing, shorter isoforms and smaller numbers of exons. Expression analysis identified 575 differentially expressed lncRNAs (DELs) classified into 6 clusters, among which members of Clusters 1, 2, 4 and 5 were putatively associated with fruit development and ripening processes. Quantitative real-time PCR revealed that the DELs indeed had stage-specific expression patterns in peach fruits. GO and KEGG enrichment analysis revealed that DELs might be associated with fruit-ripening-related physiological and metabolic changes, such as flavonoid biosynthesis, fruit texture softening, chlorophyll breakdown and aroma compound accumulation. Finally, the similarity analysis of lncRNAs within different plant species indicated the low sequence conservation of lncRNAs. Our study reports a large number of fruit-expressed lncRNAs and identifies fruit development phase-specific expressed lncRNA members, which highlights their potential functions in fruit development and ripening processes and lays the foundations for future functional research.


Asunto(s)
Prunus persica , ARN Largo no Codificante , Solanum lycopersicum , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/metabolismo
5.
Front Plant Sci ; 13: 792802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251076

RESUMEN

The TIFY family is a plant-specific gene family involved in regulating many plant processes, such as development and growth, defense and stress responses, fertility and reproduction, and the biosynthesis of secondary metabolites. The v2.0 peach (Prunus persica) genome, which has an improved chromosome-scale assembly and contiguity, has recently been released, but a genome-wide investigation of the peach TIFY family is lacking. In this study, 16 TIFY family genes from the peach genome were identified according to the peach reference genome sequence information and further validated by cloning sequencing. The synteny, phylogenetics, location, structure, and conserved domains and motifs of these genes were analyzed, and finally, the peach TIFY family was characterized into 9 JAZ, 1 TIFY, 1 PPD and 5 ZML subfamily members. Expression profiles of peach JAZ, PPD, and ZML genes in various organs and fruit developmental stages were analyzed, and they showed limited effects with fruit ripening cues. Four TIFY members were significantly affected at the mRNA level by exogenous treatment with MeJA in the peach epicarp, and among them, PpJAZ1, PpJAZ4 and PpJAZ5 were significantly correlated with fruit epicarp pigmentation. In addition, the TIFY family member protein interaction networks established by the yeast two-hybrid (Y2H) assay not only showed similar JAZ-MYC2 and JAZ homo- and heterodimer patterns as those found in Arabidopsis but also extended the JAZ dimer network to ZML-ZML and JAZ-ZML interactions. The PpJAZ3-PpZML4 interaction found in this study suggests the potential formation of the ZML-JAZ-MYC complex in the JA-signaling pathway, which may extend our knowledge of this gene family's functions in diverse biological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...