Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(19): 14122-14130, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38362630

RESUMEN

Plutonium oxycarbide plays a crucial role in the fabrication of a carbide fuel and the corrosion of plutonium. In this work, a machine-learning (ML) scheme is used to predict the thermodynamic stability of plutonium oxycarbide PuOxC1-x. The training data are generated within the framework of density-functional theory (DFT) and its Hubbard correction. Four ML schemes combined with three structural descriptors are considered and their performance is compared. The optimal ML model for the DFT data set yields remarkably small average errors of approximately 3 meV per atom for mixing energy and 0.003 Å for the lattice parameter, indicating its high prediction accuracy. Utilizing the ML model, we predict the convex hull of PuOxC1-x as well as several ordered atomic structures for a specific value of x. The enhanced energetic stability observed in these ordered structures could probably be attributed to the strong hybridization between Pu 5f/6d and C/O 2p, namely robust Pu-C and Pu-O bonds.

2.
Phys Chem Chem Phys ; 25(41): 28020-28033, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823441

RESUMEN

Atomic functionality of two-dimensional (2D) materials, typically with a controllable doping route for offering regular atomic arrangement as well as excellent magnetism, is crucial for both fundamental studies and spintronic applications. Here, the adsorptions of the 5f-electron actinide series (An = Ac-Am) on porous graphene-like carbon-nitride (gh-C3N4) layers are explored to determine their structural stabilities, electronic nature and magnetic properties using the combination of density functional theory (DFT) calculations, ab initio molecular dynamics (AIMD), Monte Carlo (MC) simulations and chemical bonding analyses. Our investigations reveal that each An atom can be individually adsorbed at the vacancy site of gh-C3N4 sheet with high energetic, thermal and dynamical stabilities, which are rooted in the major interactions of ionic An-N bonding as well as the minor interactions of covalent bonding of An-5f6d states with N-2s2p states. The delocalization of a very few 5f electrons is dependent on whether they occupy the suborbitals that are matching and conducive to hybridize with the ligand orbitals forming the 5f-2s2p covalent bonds. We propose that the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism plays a determining role for the inter-atomic 5f-5f magnetic exchange via the 6d electrons as the conduction electrons. Large magnetic moment and magnetic anisotropy energy (MAE) from the localized 5f electrons, together with the metallic characteristics owing to the delocalized 6d electrons, render these An-based 2D materials excellent metallic magnets, especially for the U@gh-C3N4 system with the modest magnetic moment of 0.6 µB, large MAE of 53 meV and high Curie temperature (TC) of 538 K.

3.
Inorg Chem ; 62(39): 16047-16058, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713315

RESUMEN

UO2, as a key material in the nuclear industry, is composed of grains or crystallites in real applications. Their interfaces, known as grain boundaries (GBs), significantly impact thermal conductivity, corrosion resistance, and mechanical response. Here, utilizing Hubbard-corrected density functional theory, we systematically examine the local cluster structures, energetic stabilities, and electronic properties of five typical tilt UO2 GBs ranging from Σ 3 to Σ 11. We categorize all possible distorted U- and O-centered clusters at these GBs and identify their cluster morphologies and radial and angular distortions. Our results highlight the abundance of new U-O bonds stretching to "medium-range", a feature often overlooked in conventional coordination analysis. To quantitatively describe these distorted clusters, we use smooth overlap of atomic positions (SOAP) to represent the structural and chemical local environments, which takes into account both radial (2-body) and angular (3-body) distortions. We define a dissimilarity index by computing the inner product of SOAP descriptors between the distorted and the perfect motif in ideal UO2. Our findings show that the medium-range SOAP dissimilarity correlates well with the GB excess energy, outperforming metrics such as dangling bonds or bonding strain. Furthermore, it is found that the band gaps in sufficiently high-energy GBs are shortened, with excess states primarily contributed by the distorted U clusters. Our results present a comprehensive gallery of the local distorted clusters introduced by typical UO2 GBs and have implications on the structure-property relations of GBs and other interfaces.

4.
RSC Adv ; 13(33): 23043-23049, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37529366

RESUMEN

Intrinsic point defects are known to play a crucial role in determining the physical properties of solid-state materials. In this study, we systematically investigate the intrinsic point defects, including vacancies (VPu and VO), interstitials (Pui and Oi), and antisite atoms (PuO and OPu) in PuO2 using the first-principles plane wave pseudopotential method. Our calculations consider the whole charge state of these point defects, as well as the effect of oxygen partial pressure. This leads to a new perspective on the process of intrinsic point defects in PuO2. We find that the antisite atoms OPu and PuO are more likely to appear in O-rich and O-deficient environments, respectively. Interestingly, the most energetically favorable type of Schottky defect is {2VPu3-: 3VO2+} in an O-rich environment, while {4VO1+: VPu4-} is preferred in an O-deficient environment. These results differ from the commonly known {VPu4-: 2VO2+} type of Schottky defect. Moreover, under O-deficient conditions, we predict that the stable cation Frenkel defect is {VPu4+: Pui4+}, while the most stable anion Frenkel defect is {VO2+: Oi2-} under O-rich conditions. Lastly, we find that the only two types of antisite pairs that can appear are {OPu5-: PuO5+} and {OPu6-: PuO6+}, with the latter being the more stable configuration. These unconventional defect configurations provide a new viewpoint on the process of intrinsic point defects in PuO2 and lay theoretical foundations for future experiments.

5.
Materials (Basel) ; 16(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37048917

RESUMEN

High-temperature body-centered cubic (BCC) γ-U is effectively stablized by γ-(U,Zr) alloys that also make it feasible to use it as a nuclear fuel. However, relatively little research has focused on γ-(U,Zr) alloys due to their instability at room temperature. The effect of Zr composition on its mechanical properties is not clear yet. Herein, we perform molecular dynamics simulations to investigate the mechanical and dynamical stabilities of γ-(U,Zr) alloys under high temperatures, and we calculate the corresponding lattice constants, various elastic moduli, Vickers hardness, Debye temperature, and dynamical structure factor. The results showed that γ-U, ß-Zr, and γ-(U,Zr) are all mechanically and dynamically stable at 1200 K, which is in good agreement with the previously reported high-temperature phase diagram of U-Zr alloys. We found that the alloying treatment on γ-U with Zr can effectively improve its mechanical strength and melting points, such as Vickers hardness and Debye temperature, making it more suitable for nuclear reactors. Furthermore, the Zr concentrations in γ-(U,Zr) alloys have an excellent effect on these properties. In addition, the dynamical structure factor reveals that γ-U shows different structural features after alloying with Zr. The present simulation data and insights could be significant for understanding the structures and properties of UZr alloy under high temperatures.

6.
Inorg Chem ; 62(16): 6314-6322, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37043328

RESUMEN

The neutral (NN)-B-B-B-(N2) complex has been trapped in low-temperature dinitrogen matrix and identified by isotopic substitution and theoretical frequency calculations. The linear B-B-B skeleton is stabilized by two inequivalent N2, namely, one end-on and other side-on N2. The structure of linear B-B-B skeleton illustrates much difference from previously reported triangle configuration of B3 clusters. Frontier orbital analysis demonstrates that the σ orbital of end-on NN and the π-bonding orbital of side-on N2 acts as the donor orbital. π bonding character across B-B-B skeleton donates to the antibonding π* orbital of end-on NN and out of phase the B-B-B features π back-donation to antibonding π* orbital of side-on N2. The combination of strong σ-donating capacity coupled with a greater ability for accepting π-back-donation of the N2 ligand leads to the formation of (NN)-B-B-B-(N2) complex with linear B-B-B skeleton. In addition, complexes of (NN)B(NN), (NN)BB(NN), and (NN)B4(NN) have been identified in our experiments.

7.
Inorg Chem ; 62(1): 363-371, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36546726

RESUMEN

Fundamental investigation of metal-CO interactions is of great importance for the development of high-performance catalysts to CO activation. Herein, a series of side-on bonded mononuclear lanthanide (Ln) oxocarbonyl complexes OLn(η2-CO) (Ln = La, Ce, Pr, and Nd) have been prepared and identified in solid argon matrices. The complexes exhibit uncommonly low C-O stretching bands near 1630 cm-1, indicating remarkable C-O bond activation in these Ln analogues. The η2-CO ligand in OLn(η2-CO) can be claimed as an anion on the basis of the experimental observations and quantum chemistry investigations, although the CO anion is commonly considered to be unstable with electron auto-detachment. The CO activation in OLn(η2-CO) is attributed to the photoinduced intramolecular charge transfer from LnO to CO rather than the generally accepted metal → CO π back-donation, which conforms to the traditional Dewar-Chatt-Duncanson motif. Energy decomposition analysis combined with natural orbitals for chemical valence calculations demonstrates that the bonding between LnO and η2-CO arises from the combination of dominant ionic forces (>76%) and normal Lewis "acid-base" interactions. The fundamental findings provide guidelines for the catalyst design of CO activation.

8.
Materials (Basel) ; 15(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36363044

RESUMEN

At present, many experimental fast reactors have adopted alloy nuclear fuels, for example, U-Zr alloy fuels. During the neutron irradiation process, vacancies and hydrogen (H) impurity atoms can both exist in U-Zr alloy fuels. Here, first-principles density functional theory (DFT) is employed to study the behaviors of vacancies and H atoms in disordered-γ(U,Zr) as well as their impacts on the electronic structure and mechanical properties. The formation energy of vacancies and hydrogen solution energy are calculated. The effect of vacancies on the migration barrier of hydrogen atoms is revealed. The effect of vacancies and hydrogen atom on densities of states and elastic constants are also presented. The results illustrate that U vacancy is easier to be formed than Zr vacancy. The H interstitial prefers the tetrahedral site. Besides, U vacancy shows H-trap ability and can raise the H migration barrier. Almost all the defects lead to decreases in electrical conductivity and bulk modulus. It is also found that the main effect of defects is on the U-5f orbitals. This work provides a theoretical understanding of the effect of defects on the electronic and mechanical properties of U-Zr alloys, which is an essential step toward tailoring their performance.

9.
Sci Rep ; 12(1): 15014, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056159

RESUMEN

Under the background of automobile intelligence, cockpit comfort is receiving increasing attention, and intelligent cockpit comfort evaluation is especially important. To study the intelligent cockpit comfort evaluation model, this paper divides the intelligent cockpit comfort influencing factors into four factors and influencing indices: acoustic environment, optical environment, thermal environment, and human-computer interaction environment. The subjective and objective evaluation methods are used to obtain the subjective weights and objective weights of each index by the analytic hierarchy process and the improved entropy weight method, respectively. On this basis, the weights are combined by using the game theory viewpoint to obtain a comprehensive evaluation model of the intelligent automobile cockpit comfort. Then, the cloud algorithm was used to generate the rank comprehensive cloud model of each index for comparison. The research results found that among the four main factors affecting the intelligent automobile cockpit comfort, human-computer interaction has the greatest impact on it, followed by the thermal environment, acoustic environment, and optical environment. The results of the study can be used in intelligent cockpit design to make intelligent cockpits provide better services for people.


Asunto(s)
Algoritmos , Automóviles , Entropía , Humanos , Inteligencia
10.
Inorg Chem ; 61(29): 11075-11083, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35833920

RESUMEN

Investigations of the interactions of uranium trioxide (UO3) with other species are expected to provide a new perspective on its reaction and bonding behaviors. Herein, we present a combined matrix-isolation infrared spectroscopy and theoretical study of the geometries, vibrational frequencies, electronic structures, and bonding patterns for a series of dinitrogen (N2) complexes with UO3 moieties UO3(η1-NN)1-4. The complexes are prepared by reactions of laser-ablated uranium atoms with O2/N2 mixtures or laser-ablated UO3 molecules with N2 in solid argon. UO3(η1-NN)1-4 are classified as "nonclassical" metal-N2 complexes with increased Δν(N2) values according to the experimental observations and the computed blue-shifts of N-N stretching frequencies and N-N bond length contractions. Electronic structure analysis suggests that UO3(η1-NN)1-4 are σ-only complexes with a total lack of π-back-donation. The energy decomposition analysis combined with natural orbitals for chemical valence calculations reveal that the bonding between the UO3 moiety and N2 ligands in UO3(η1-NN)1-4 arises from the roughly equal electrostatic attractions and orbital mixings. The inspection of orbital interactions from pairwise contributions indicates that the strongest orbital stabilization comes from the σ-donations of the 4σ*- and 5σ-based ligand molecular orbitals (MOs) into the hybrid 7s/6dx2-y2 MO of the U center. The electron polarization induced by electrostatic effects in the Ninner ← Nouter direction provides complementary contributions to the orbital stabilization in UO3(η1-NN)1-4. In addition, the reactions of UO3 with N2 ligands and the origination of the nonclassical behavior in UO3(η1-NN)1-4 are discussed.

11.
Inorg Chem ; 61(4): 2066-2075, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35037755

RESUMEN

Investigations on the structures and bonding properties of metal carbonyl compounds provide fundamental understandings on the origin of small-molecule activations. Herein, the geometry and bonding trends of a series of isovalent metal oxocarbonyl complexes O2M(η1-CO) (M = Cr, Mo, W, Nd, and U) were studied by combined matrix-isolation infrared spectroscopy and advanced quantum chemical calculations. The title complexes present red shift of C-O stretching bands in the range from 122 to 244 cm-1, indicating the difference of CO activation ability for the series of isovalent metal dioxides. Density functional theory calculations predict T-shaped structures with a C2v symmetry for all the title molecules. O2Nd(η1-CO) bears little resemblance to the other complexes in bonding characters because of the weak interactions between the NdO2 and CO moiety. For the other complexes, natural localized molecular orbital analysis reveals a gradual increase of covalent character in M-CO bonds along the metal series Cr → Mo → W→ U. Energy decomposition analysis with natural orbitals for chemical valence calculations demonstrates that the M-CO bonding patterns conform to the conventional Dewar-Chatt-Duncanson motif. The contributions from orbital interactions in total attractions increase from Cr (41.7%) to U (52.7%). The breakdown of the orbital term into pairwise interactions shows that contributions of the M ← CO σ donation decrease from Cr (59.2%) to U (28.4%), while the M → CO π* backdonation increases significantly from Cr (23.8%) to U (67.3%). The more effective overlap and the better energy matching of U 5f and U 6d valence orbitals with CO π* orbitals result in much stronger U → CO π backdonation than the other metal elements.

12.
Nanotechnology ; 32(42)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34256355

RESUMEN

The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).

13.
Phys Chem Chem Phys ; 23(2): 878-885, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33346754

RESUMEN

The effect of atomic hydrogen adsorption on AnO2 (An = Th, U, and Pu) surfaces is studied in the framework of density functional theory and Hubbard-corrected density functional theory. Several adsorption coverages (1/3, 1/2, 2/3, and 1 monolayer) are considered. For the band insulator ThO2, surface metallicity induced by hydrogen adsorption is observed due to the electron donation of the hydrogen to the surface. But this effect is found to be strongly suppressed by electronic correlation for the Mott insulators UO2 and PuO2 because the electrons from the adsorbed hydrogen atoms occupy the localized 5f orbitals of the surface U/Pu atoms.

14.
Phys Chem Chem Phys ; 22(16): 9009-9013, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32293609

RESUMEN

Plutonium monocarbide, which contains a considerable amount of vacancies in the carbon sublattice, has never been synthesized in a stoichiometric form. The intriguing substoichiometric behavior of plutonium monocarbide is investigated here using first-principles calculations combined with the special quasirandom structure. It is found that the NaCl-type substoichiometric plutonium monocarbide is stable for PuC0.741-0.923, which is in good agreement with the experiment. From the electronic structure calculations and chemical bond analyses, the stabilization of PuC1-x in this range is attributed to strengthened Pu-C bonds opposite the carbon vacancies.

15.
RSC Adv ; 10(42): 24877-24881, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35517460

RESUMEN

The intriguing and controversial sub-stoichiometric behavior of plutonium mononitride is investigated here using first-principles calculations combined with special quasirandom structures. It is found that NaCl-type plutonium mononitride is stable for only stoichiometric levels, and the formation enthalpy of plutonium mononitride is in good agreement with others. By comparing with plutonium monocarbide, the main reason for the absence of sub-stoichiometric behavior is the lower N-2p orbital energy, resulting in less hybridization and weaker Pu-N bonds. The weaker Pu-N bonds cannot support the formation of vacancies.

16.
Phys Chem Chem Phys ; 21(47): 25962-25975, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31559409

RESUMEN

Fluorite-type XO2 (X = Ce, Th, U) have versatile technological and industrial applications, and the behavior of impurities in the oxides is one of the engaging topics for their application. However, the fundamental behaviors of impurities are still lacking. Herein, we conduct a systematic first-principles DFT+U screening to find the trends of transition metal (TM) behaviors in the three dioxides in terms of energetics and electronic states, with a particular focus on the dependency of f electronic states of the hosts. In order to overcome the long-standing bottleneck of determining the true oxidation state of multivalent TMs, Ce and U, a more rigorous method based on counting orbital occupation numbers of f and d orbitals is performed for clarification. The calculated incorporation energies and formation energies of TMs show that the relative stability of TMs in the three XO2 exhibits similar trends, indicative of the dominant roles played by the host oxides with the same crystal structure and very close lattice parameters. On the other hand, the quantitative differences in the stability and electronic state of doped TMs could be mainly attributed to the differences in the electronic structure of host XO2. The 5f electrons in UO2 are more delocalized than 4f in CeO2, suppressing the formation of high oxidation states of TMs in the former. For ThO2 with the negligible f electrons associated with monovalent Th4+, the doped TMs tend to adopt the oxidation states close to TM4+, achieving the electronically matched states. The appearance of a few unusual oxidation states of TMs sheds light on the flexible delocalization-localization mutual transition of f or d valence electrons.

17.
Inorg Chem ; 58(7): 4350-4364, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30864447

RESUMEN

As impurities are virtually impossible to exclude from Pu oxides in realistic environments, understanding the roles of impurities is crucial for the applications and designs of Pu oxides. Here we perform a systematic first-principles DFT + U calculation to find the trends of transition-metal (TM) behaviors in PuO2 in terms of energetics, atomic properties, oxidation states, and electronic structures. The results show that group IV-B elements Ti, Zr, and Hf are energetically and electronically favorable in PuO2 and render the possibilities of forming Pu-TM-O ternary phases. In contrast, the remaining TMs tend to destabilize PuO2 and whether phase segregation or transition occurs largely depends on the redox conditions: oxidation one induces segregation, whereas reduction one facilitates the transition from PuO2 to Pu2O3. On the basis of the correlations between the properties of TMs and their relative stabilities in PuO2, we conclude that the degree of electron match between TMs and Pu plays the decisive role in the stability, as established for the cases of tetravalent elements, whereas some electron-mismatched but energetically stable TMs such as III-B and V-B elements could drive the valence transition of Pu, resulting in the phase instability of PuO2.

18.
Phys Chem Chem Phys ; 21(9): 4732-4737, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30426992

RESUMEN

The nature and extent of the highest oxidation state (HOS) in solid-state actinide compounds are still unexplored compared with those of small molecules, and there is burgeoning interest in studying the actinide-ligand bonding nature in the condensed state. A comprehensive understanding of the electronic structure and unraveling the possibility of a HOS are of paramount importance in solid-state actinide chemistry. Here, we report the physical OS of the early to middle actinides (Th → Cm) in solid-state compounds via a more rigorous quantum mechanical definition of OS under the DFT+U theoretical frameworks for the first time. This work implies that the highest physical OS of the Pu solid ion is PuV in PuO2F and PuOF4, which can be achieved via tuning the ligand, thus improving our knowledge of oxidation states and chemical bonding in high OS solid-state compounds. We highlight the importance of ligand design in terms of the actinide HOS, employing a highly electronegative ligand and showing the capacity to form multiple bonds.

19.
Sci Rep ; 7(1): 12167, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939821

RESUMEN

The resolution of questions about the existence of condensed plutonium monoxide (PuO) has long been hindered by lack of thermochemical data. Here we perform first-principles calculation to investigate the reaction Pu2O3 + Pu → 3 PuO and find that PuO is thermodynamically unstable under ambient pressure. We also find that pressure could stabilize PuO by strengthening the hybridization between Pu-5f/6d and O-2p states. Moreover, the dynamical stability of NaCl-type PuO is verified by the phonon calculation. Optical properties such as reflectivity are also predicted for the detection of metallic PuO.

20.
Inorg Chem ; 56(6): 3550-3555, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28266848

RESUMEN

Despite the fact that five kinds of uranium nitrides, i.e., uranium mononitrides (UN, R3̅m and Fm3̅m), a uranium dinitride (UN2, Fm3̅m), and uranium sesquinitrides (α-U2N3, Ia3̅; ß-U2N3,P3̅m1), have been confirmed, until now the phase relations are not well understood because of the puzzling nonstoichiometric issue. This work reinvestigated the crystallographic structures of these phases using cluster formula theory. The principal clusters (cuboctahedron with six squares and eight triangles) in these phases were determined. N atoms can occupy either six octahedral sites (square face centers) or eight tetrahedral sites (formed by a center atom and a triangle) in the principal cluster of 13 U atoms, resulting in these diversified phases and the nonstoichiometric issue. Also, phase transformations at certain temperatures and pressures (from CaF2-type UN2 to Mn2O3-type U2N3, from Mn2O3-type U2N3 to NaCl-type UN, and from NaCl-type UN to HgIn-type UN) were deduced by tracking the bond and angle changes of a simplified cluster [U-U6N6]. This investigation provides an in-depth understanding of the phase relations in a U-N system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...