Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e33266, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021979

RESUMEN

Corrosion transition during uniform corrosion of zirconium alloys receives much attention since it is the major degradation procedure. However, predicting the time and oxide thickness at transition has been hindered by the lack of knowledge about transition kinetics and how it responds to varied temperatures. Current study investigated the temperature-sensitivity of corrosion kinetics, transition behavior and microstructures of various zirconium alloys corroded in superheated steam ranging from 390 °C/10.3 MPa to 455 °C/10.3 MPa by autoclave experiment and microscopy analyses. Transition time was found to follow Arrhenius-type relationship with temperature for the first time. Both the transition oxide thickness and metastable oxide thickness increased with temperature, which was theoretically deduced and experimentally confirmed. In Zr-4 oxides, a transition thickness varying from 3.3 µm at 390 °C to 4.2 µm at 455 °C was observed. Microstructure results presented rather large HCP-ZrO particles (200∼400 nm) at O/M interface and they were even larger at the protruded positions. An intense sub-stoichiometric atmosphere was identified at O/M interface, promoting the growth of metastable oxides. The activation energy of transition kinetics was 86∼114 kJ/mol, which is close to diffusion activation energy of oxygen in tetragonal zirconia. A new model based on parabolic-law empirical relationship was thus proposed to predict transition kinetics. Predictions regarding the time to oxidation breakaway at 900-1000 °C were reported, and the results were in good agreement with the experimental data.

2.
Materials (Basel) ; 12(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514358

RESUMEN

In recent years, the development of nuclear grade FeCrAl-based alloys with enhanced accident tolerance has been carried out for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys. To achieve excellent microstructure stability and mechanical properties, the control of precipitation particles is critical for application of FeCrAl-based alloys. In this paper, the effect of thermomechanical processing on the microstructure and precipitation behavior of hot-rolled FeCrAl alloy plates was examined. After hot rolling, the FeCrAl alloy plates had typical deformation textures. The rolling direction (RD) orientation gradually rotated from <100> to <110> along with increasing reduction. Shear bands and cell structures were formed in the matrix, and the former acted as preferable nucleation sites for crystallization. Improved deformation helped to produce strain-induced precipitation. The plate with 83% reduction had the most homogeneous and finest precipitation particles. Identification results by TEM indicated that the Laves precipitation was of the Fe2Nb-type crystal structure type, with impurities including Mo, Cr, and Si. The plate with uniform Laves particles displayed favorable heat stability after a long period of aging at 800 °C. The microstructure evolution of the aged sample was also observed. The deformation microstructure and the strain-induced precipitation mechanism of FeCrAl alloys are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...