Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 674: 686-694, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38950467

RESUMEN

The energy storage capacity of porous carbon materials is closely tied to their surface structure and chemical properties. However, developing an innovative and straightforward approach to synthesize yolk-shell carbon spheres (YCs) remains a great challenge till date. Herein, we prepared a series of porous nitrogen-doped yolk-shell carbon spheres (NYCs) via a "pyrolysis-capture" method. This method involves coating the resorcinol-formaldehyde (RF) resin sphere with a layer of compact silica shell induced by 2-methylimidazole (ME) catalysis to produce a confined nano-space. Based on the confined effect of compact silica shell, volatile gases emitted from the RF resin and ME during pyrolysis can not only diffuse into the pores of the RF resin but can also be captured to form an outer carbon shell. This results in the tunable structures of NYCs materials. As the pyrolysis temperature rises, the shell thickness of NYCs reduces, the pore size expands, the roughness increases, and the N/O content of surface elements is enhanced. Notably, as an electrode material used forsupercapacitors,the optimized NYCs-800 exhibits excellent performance with a capacitance of 301.2F g-1 at the current density of 1 A/g and outstanding cycling life stability of 96.1% after 10,000 cycles. These results signify that controlling the surface structure and chemical properties of NYCs materials is an effective approach for constructing advanced energy storage materials.

2.
Angew Chem Int Ed Engl ; : e202409099, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924238

RESUMEN

Achieving enhanced or blue-shifted emission from piezochromic materials remains a major challenge. Covalent organic frameworks (COFs) are promising candidates for the development of piezochromic materials owing to their dynamic structures and adjustable optical properties, where the emission behaviors are not solely determined by the functional groups, but are also greatly influenced by the specific geometric arrangement. Nevertheless, this area remains relatively understudied. In this study, a successful synthesis of a series of bicarbazole-based COFs with varying topologies, dimensions, and linkages was conducted, followed by an investigation of their structural and emission properties under hydrostatic pressure generated by a diamond anvil cell. Consequently, these COFs exhibited distinct piezochromic behaviors, particularly a remarkable pressure-induced emission enhancement (PIEE) phenomenon with a 16-fold increase in fluorescence intensity from three-dimensional COFs, surpassing the performance of CPMs and most organic small molecules with PIEE behavior. On the contrary, three two-dimensional COFs with flexible structures exhibited rare blue-shifted emission, whereas the variants with rigid and conjugated structures showed common red-shifted and reduced emission. Mechanism research further revealed that these different piezochromic behaviors were primarily determined by interlayer distance and interaction.

3.
Angew Chem Int Ed Engl ; : e202410417, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924241

RESUMEN

The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in-situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.

4.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392702

RESUMEN

Due to their large surface area and pore volume, three-dimensional covalent organic frameworks (3D COFs) have emerged as competitive porous materials. However, structural dynamic behavior, often observed in imine-linked 3D COFs, could potentially unlock their potential application in gas storage. Herein, we showed how a pre-locked linker strategy introduces breaking dynamic behavior in 3D COFs. A predesigned planar linker-based 3,8-diamino-6-phenylphenanthridine (DPP) was prepared to produce non-dynamic 3D JUC-595, as the benzylideneamine moiety in DPP locked the linker flexibility and restricted the molecular bond rotation of the imine linkages. Upon solvent inclusion and release, the PXRD profile of JUC-595 remained intake, while JUC-594 with a flexible benzidine linker experienced crystal transformation due to framework contraction-expansion. As a result, the activated JUC-595 achieved higher surface areas (754 m2 g-1) than that of JUC-594 (548 m2 g-1). Furthermore, improved CO2 and CH4 storages were also seen in JUC-595 compared with JUC-594. Impressively, JUC-595 recorded a high normalized H2 storage capacity that surpassed other reported high-surface area 3D COFs. This works shows important insights on manipulating the structural properties of 3D COF to tune gas storage performance.

5.
Nat Commun ; 15(1): 813, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280854

RESUMEN

The synthesis of three-dimensional covalent organic frameworks with highly connected building blocks presents a significant challenge. In this study, we report two 3D COFs with the nia topology, named JUC-641 and JUC-642, by introducing planar hexagonal and triangular prism nodes. Notably, our adsorption studies and breakthrough experiments reveal that both COFs exhibit exceptional separation capabilities, surpassing previously reported 3D COFs and most porous organic polymers, with a separation factor of up to 2.02 for benzene and cyclohexane. Additionally, dispersion-corrected density functional theory analysis suggests that the good performance of these 3D COFs can be attributed to the incorporation of highly aromatic building blocks and the presence of extensive pore structures. Consequently, this research not only expands the diversity of COFs but also highlights the potential of functional COF materials as promising candidates for environmentally-friendly separation applications.

6.
Small ; 20(3): e2305759, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37700638

RESUMEN

Metal-free carbon-based materials have gained recognition as potential electrocatalysts for the oxygen reduction reaction (ORR) in new environmentally-friendly electrochemical energy conversion technologies. The presence of effective active centers is crucial for achieving productive ORR. In this study, we present the synthesis of two metal-free dibenzo[a,c]phenazine-based covalent organic frameworks (DBP-COFs), specifically JUC-650 and JUC-651, which serve as ORR electrocatalysts. Among them, JUC-650 demonstrates exceptional catalytic performance for ORR in alkaline electrolytes, exhibiting an onset potential of 0.90 V versus RHE and a half-wave potential of 0.72 V versus RHE. Consequently, JUC-650 stands out as one of the most outstanding metal-free COF-based ORR electrocatalysts report to date. Experimental investigations and density functional theory calculations confirm that modulation of the frameworks' electronic configuration allows for the reduction of adsorption energy at the Schiff-base carbon active sites, leading to more efficient ORR processes. Moreover, the DBP-COFs can be assembled as excellent air cathode catalysts for zinc-air batteries (ZAB), rivaling the performance of commercial Pt/C. This study provides valuable insights for the development of efficient metal-free organoelectrocatalysts through precise regulation of active site strategies.

7.
Chemistry ; 29(67): e202302290, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669904

RESUMEN

The design and synthesis of covalent organic frameworks (COFs) with high chemical stability pose significant challenges for practical applications. Although a growing number of robust COFs have been developed and employed for a broad scope of applications, the assessment of COF stability has primarily relied on qualitative descriptions, lacking a rational and quantitative assessment. Herein, a novel assessment method is presented that enables visual and quantitative depiction of COF stability. By analyzing the PXRD patterns of chemically stable ß-ketoenamine-based COFs (KEA-COFs), two crystallinity-dependent parameters are identified, the relative intensity (I2θrel ) and the relative area (A2θrel ) of the main peak (2θ), which are expected to establish a standardized criterion for assessing COF crystallinity. Based on these parameters, the crystalline changes after stability tests can be visually presented, which provides a rational and quantitative assessment of their stability. This study not only demonstrates the remarkable chemical stability of KEA-COFs, but also provides valuable insights into the quantitative evaluation of COFs' crystallinity and stability.

8.
J Colloid Interface Sci ; 651: 235-242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37542898

RESUMEN

In this work, we have proposed a strategy to fabricate double-shell nanotubes as amphiphilic photoactive nanoreactors (HTTBPC) through the ordered hybridization of mesoporous organosilicon (PMO) and titanium dioxide (TiO2) nanotubes. Unlike the previous rough composite, the heterogeneous structure established between cobalt-porphyrin functionalized PMO and conventional TiO2 has a staggered matching band gap, which makes it have excellent light harvesting and high carrier separation ability. This is still unexplored. Interestingly, the prepared photocatalysts exhibited superior activity (99%) and benzaldehyde selectivity (94%) in the oxidation of styrene in water at room temperature, which was 3.8 and 2.8 times higher than that of TiO2 nanotubes and PMO functionalized with cobalt porphyrin, respectively. It was demonstrated that the strong interaction between cobalt porphyrin PMO and TiO2 improved the separation of photogenerated carriers and the amphiphilic properties of mesoporous organosilica boosted the adsorption of substrate molecules in water, contributing to the significantly enhanced photocatalytic activity. This work provides a design of high-performance photocatalysts for alkene oxidation under green conditions.

9.
Nanomicro Lett ; 15(1): 159, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386227

RESUMEN

Metal-free carbon-based materials are considered as promising oxygen reduction reaction (ORR) electrocatalysts for clean energy conversion, and their highly dense and exposed carbon active sites are crucial for efficient ORR. In this work, two unique quasi-three-dimensional cyclotriphosphazene-based covalent organic frameworks (Q3CTP-COFs) and their nanosheets were successfully synthesized and applied as ORR electrocatalysts. The abundant electrophilic structure in Q3CTP-COFs induces a high density of carbon active sites, and the unique bilayer stacking of [6 + 3] imine-linked backbone facilitates the exposure of active carbon sites and accelerates mass diffusion during ORR. In particular, bulk Q3CTP-COFs can be easily exfoliated into thin COF nanosheets (NSs) due to the weak interlayer π-π interactions. Q3CTP-COF NSs exhibit highly efficient ORR catalytic activity (half-wave potential of 0.72 V vs. RHE in alkaline electrolyte), which is one of the best COF-based ORR electrocatalysts reported so far. Furthermore, Q3CTP-COF NSs can serve as a promising cathode for Zn-air batteries (delivered power density of 156 mW cm-2 at 300 mA cm-2). This judicious design and accurate synthesis of such COFs with highly dense and exposed active sites and their nanosheets will promote the development of metal-free carbon-based electrocatalysts.

10.
Angew Chem Int Ed Engl ; 62(27): e202304234, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134296

RESUMEN

Piezochromic materials with pressure-dependent photoluminescence tuning properties are important in many fields, such as mechanical sensors, security papers, and storage devices. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials (CPMs) with structural dynamics and tunable photophysical properties, are suitable for designing piezochromic materials, but there are few related studies. Herein, we report two dynamic three-dimensional COFs based on aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ) chromophores, termed JUC-635 and JUC-636 (JUC=Jilin University China), and for the first time, study their piezochromic behavior by diamond anvil cell technique. Due to the various luminescent groups, JUC-635 has completely different solvatochromism and molecular aggregation behavior in the solvents. More importantly, JUC-635 with AIE effect exhibits a sustained fluorescence upon pressure increase (≈3 GPa), and reversible sensitivity with high-contrast emission differences (Δλem =187 nm) up to 12 GPa, superior to other CPMs reported so far. Therefore, this study will open a new gate to expand the potential applications of COFs as exceptional piezochromic materials in pressure sensing, barcoding, and signal switching.

11.
ACS Appl Mater Interfaces ; 15(15): 19241-19249, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37029737

RESUMEN

Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.

12.
J Am Chem Soc ; 145(17): 9679-9685, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37072290

RESUMEN

Although isomerism is a typical and significant phenomenon in organic chemistry, it is rarely found in covalent organic framework (COF) materials. Herein, for the first time, we report a controllable synthesis of topological isomers in three-dimensional COFs via a distinctive tetrahedral building unit under different solvents. Based on this strategy, both isomers with a dia or qtz net (termed JUC-620 and JUC-621) have been obtained, and their structures are determined by combining powder X-ray diffraction and transmission electron microscopy. Remarkably, these architectures show a distinct difference in their porous features; for example, JUC-621 with a qtz net exhibits permanent mesopores (up to ∼23 Å) and high surface area (∼2060 m2 g-1), which far surpasses those of JUC-620 with a dia net (pore size of ∼12 Å and surface area of 980 m2 g-1). Furthermore, mesoporous JUC-621 can remove dye molecules efficiently and achieves excellent iodine adsorption (up to 6.7 g g-1), which is 2.3 times that of microporous JUC-620 (∼2.9 g g-1). This work thus provides a new way for constructing COF isomers and promotes structural diversity and promising applications of COF materials.

13.
J Am Chem Soc ; 145(5): 3248-3254, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36718987

RESUMEN

Benefiting from their unique structural merits, three-dimensional (3D) large-pore COF materials demonstrate high surface areas and interconnected large channels, which makes these materials promising in practical applications. Unfortunately, functionalization strategies and application research are still absent in these structures. To this end, a series of functional 3D stp-topologized COFs are designed based on porphyrin or metalloporphyrin moieties, named JUC-640-M (M = Co, Ni, or H). Interestingly, JUC-640-H exhibits a record-breaking low crystal density (0.106 cm3 g-1) among all crystalline materials, along with the largest interconnected pore size (4.6 nm) in 3D COFs, high surface area (2204 m2 g-1), and abundant exposed porphyrin moieties (0.845 mmol g-1). Inspired by the unique structural characteristics and photoelectrical performance, JUC-640-Co is utilized for the photoreduction of CO2 to CO and demonstrates a high CO production rate (15.1 mmol g-1 h-1), selectivity (94.4%), and stability. It should be noted that the CO production rate of JUC-640-Co has exceeded those of all reported COF-based materials. This work not only produces a series of novel 3D COFs with large channels but also provides a new guidance for the functionalization and applications of COFs.

14.
Macromol Rapid Commun ; 44(11): e2200774, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36520529

RESUMEN

The uniquely tunable nature of covalent organic frameworks (COFs), whose pore size and stability can be controlled by choosing diverse organic building blocks and linkage types, makes COFs potential candidates for the membrane separation. Therefore, the preparation of membranes with effective separation efficiency based on COFs has aroused great interest among researchers. Although solvothermal approach has been the most popular method for the preparation of COF membranes, fabricating COF membranes at room temperature (RT) will provide a simple and captivating strategy for separation membranes. Herein, a P-COF membrane on porous alumina substrate at RT, showing 99.7% rejection of rhodamine B and excellent water permeance up to 52 L m-2 h-1 bar-1 , which can effectively purify wastewater is successfully obtained. P-COF is directly grown on alumina to form the composite membrane, which enhances the mechanical strength of COF membrane and avoids the risk of damaging the membrane structure during the transfer process of self-standing membrane. Moreover, P-COF membrane is grown at RT, which is more energy efficient than the conventional solvothermal method. Thus, it is of great significance to obtain COF membranes with excellent nanofiltration performance in a simple and mild condition to alleviate environmental and energy concerns.


Asunto(s)
Estructuras Metalorgánicas , Temperatura , Membranas , Óxido de Aluminio , Porosidad
15.
Angew Chem Int Ed Engl ; 62(3): e202213203, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36253336

RESUMEN

Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.

16.
Chem Sci ; 13(32): 9305-9309, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36093015

RESUMEN

Covalent organic frameworks (COFs) have attracted extensive interest due to their unique structures and various applications. However, structural diversities are still limited, which greatly restricts the development of COF materials. Herein, we report two unusual cubic (8-connected) building units and their derived 3D imine-linked COFs with bcu nets, JUC-588 and JUC-589. Owing to these unique building blocks with different sizes, the obtained COFs can be tuned to be microporous or mesoporous structures with high surface areas (2728 m2 g-1 for JUC-588 and 2482 m2 g-1 for JUC-589) and promising thermal and chemical stabilities. Furthermore, the high selectivity of CO2/N2 and CO2/CH4, excellent H2 uptakes, and efficient dye adsorption are observed. This research thus provides a general strategy for constructing stable 3D COF architectures with adjustable pores via improving the valency of rigid building blocks.

17.
Nanoscale ; 14(36): 13227-13235, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36052550

RESUMEN

The sluggish conversion reaction and the accompanying huge volume fluctuation greatly hinder the application of lithium-selenium (Li-Se) batteries. Therefore, reasonably constructing stable carbonaceous hosts with efficient electrochemically active sites is particularly essential for promoting the development of Se cathodes. Herein, a metal-organic solid derived carbon host with multiple heterogeneous NiSe2/Ni2Co/CoSe2 interfaces was fabricated via in situ selenization. The formation of multiple heterointerfaces introduced subtle atomic array distortions, which provided additional electrochemically active sites compared with single heterointerfaces. Besides, the establishment of a built-in electric field was favorable for electron transfer and the absorption of Li+, thereby accelerating the reaction kinetics. Depending on the hollow structure and the heterogeneous catalysts, Li-Se batteries with NiSe2/Ni2Co/CoSe2@Se cathodes delivered reversible capacities of 503 and 324 mA h g-1 after 900 and 2200 cycles at 1 and 12 C, respectively. This work revealed the synergistic mechanism of multiple heterostructures composed of a Ni2Co alloy and in situ derived bimetallic selenides for Se cathodes and provided new insights into the exploitation of energy storage materials.

18.
ACS Appl Mater Interfaces ; 14(28): 31782-31791, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786834

RESUMEN

The focus of designing and synthesizing composite catalysts with high photocatalytic efficiency is the regulation of nanostructures and optimization of heterojunctions. By increasing the contact area between the catalysts, additional reaction sites can be established and charge carriers can be transferred and reacted faster. Here, two-dimensional (2D) Mo2C is prepared via a novel approach by carbonizing precursors intercalated by low-boiling solvents, and a composite catalyst Mo2C/graphitic carbon nitride (g-C3N4) with 2D to 2D structure optimization was synthesized through the self-assembly of 2D Mo2C and 2D g-C3N4. The hydrogen production rate of the photocatalyst at the optimal ratio is 675.27 µmol g-1 h-1, which further exceeds 2D g-C3N4. It is 5.1 times that of the 7 wt % B/2D Mo2C/g-C3N4 photocatalyst and also 3.5 times that of 0.5 wt % Pt/g-C3N4. The enhanced photocatalytic activity is attributed to the fact that Mo2C as a cocatalyst can rapidly transfer the photogenerated electrons of g-C3N4 to the surface of Mo2C, and the 2D to 2D structure can provide abundant reaction sites for photogenerated electrons to prevent their recombination with holes. This study provides new ideas and techniques for the development of 2D platinum-like cocatalysts and the optimization of nanojunctions.

19.
Acc Chem Res ; 55(14): 1912-1927, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35761434

RESUMEN

ConspectusAs one of the most attractive members in the porous materials family, covalent organic frameworks (COFs) have been reported thousands of times since their first discovery in 2005, covering their design, synthesis, and applications. However, an overwhelming majority of these COFs are based on two-dimensional (2D) topologies while three-dimensional (3D) COFs are numbered fewer than 100 up to date. In fact, baring enhanced specific surface area, interconnected channels, well-exposed functional moieties, and highly adjustable structures, 3D COFs are often more competitive in various application fields like adsorption, separation, chemical sensing, and heterogeneous catalysis compared with their 2D counterparts. However, significant crystallization problems and poor chemical stabilities, which might be attributed to the highly void frameworks and the absence of π-π stacking, have raised severe limitations over the research and application of 3D COFs. To solve these problems, more elaborate synthesis regulations or more moderate functionalization conditions are required. More importantly, the strategies for enhancing chemical stabilities of 3D COFs are of vital importance for their further development and practical applications.In this Account, we review the design principles, functional approaches, and stability regulation methods toward functional 3D COFs. We begin the discussion with some essential elements in the construction of 3D COF structures, including topologies, interpenetrations, linkages, and synthetic methods. After that, we focus on several strategies for the functionalization of 3D COFs, including in situ approaches (utilizing in situ generated COF linkages as the active sites), bottom-up synthesis (embedding functional moieties from predesigned building blocks), and postsynthesis modification (covalent modification or metalation of pristine frameworks). At last, we highlight some approaches toward the durable amplification of 3D COFs, which is highly important for framework functionalization and practical application. This target could be achieved through not only the introduction of some extra strengthening force, such as hydrophobic effects, coulomb repulsion, and steric hindrance effects, but also the utilization of robust linkages, which could enhance the stability from material nature.Due to their high surface area, various interpenetrated channels, multifarious functionalities, and promising stabilities, 3D COFs demonstrated excellent performance and have great potential in a wide range of application fields including adsorption and separation, heterogeneous catalysis, energy storage, and so on. Although the development of these materials has been limited by serious crystallization problems and stability restriction, great efforts have been devoted by researchers in the past decade, and a mass of strategies have been developed in synthesis control, functionalization regulation, and stability enhancement for 3D COFs. We expect 3D COFs to be practically utilized in the future with further advances in the design, preparation, and functionalization of these materials.

20.
J Am Chem Soc ; 144(14): 6583-6593, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35380434

RESUMEN

Morphological control of covalent organic frameworks (COFs) is particularly interesting to boost their applications; however, it remains a grand challenge to prepare hollow structured COFs (HCOFs) with high crystallinity and uniform morphology. Herein, we report a versatile and efficient strategy of amorphous-to-crystalline transformation for the general and controllable fabrication of highly crystalline HCOFs. These HCOFs exhibited ultrahigh surface areas, radially oriented nanopore channels, quite uniform morphologies, and tunable particle sizes. Mechanistic studies revealed that H2O, acetic acid, and solvent played a crucial role in manipulating the hollowing process and crystallization process by regulating the dynamic imine exchange reaction. Our approach was demonstrated to be applicable to various amines and aldehydes, producing up to 10 kinds of HCOFs. Importantly, based on this methodology, we even constructed a library of unprecedented HCOFs including HCOFs with different pore structures, bowl-like HCOFs, cross-wrinkled COF nanocapsules, grain-assembled HCOFs, and hydrangea-like HCOFs. This strategy was also successfully applied to the fabrication of COF-based yolk-shell nanostructures with various functional interior cores. Furthermore, catalytically active metal nanoparticles were implanted into the hollow cavities of HCOFs with tunable pore diameters, forming attractive size-selective nanoreactors. The obtained metal@HCOFs catalysts showed enhanced catalytic activity and outstanding size-selectivity in hydrogenation of nitroarenes. This work highlights the significance of nucleation-growth kinetics of COFs in tuning their morphologies, structures, and applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...