Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Ecotoxicol Environ Saf ; 284: 116890, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146593

RESUMEN

Perfluorooctane sulfonate (PFOS) is known as a persistent organic pollutant. A significant correlation between PFOS and liver ferroptosis has been unveiled, but the precise mechanism needs to be elucidated. In prior research, we found that PFOS treatment provoked mitochondrial iron overload. In this study, we observed a gradual increase in lysosomal iron in L-O2 cells after exposure to PFOS for 0.5-24 h. In PFOS-exposed L-O2 cells, suppressing autophagy relieved the lysosomal iron overload. Inhibiting transient receptor potential mucolipin 1 (TRPML1), a calcium efflux channel on the lysosomal membrane, led to a further rise in lysosomal iron levels and decreased mitochondrial iron overload during PFOS treatment. Suppressing VDAC1, a subtype of voltage-dependent anion-selective channels (VDACs) on the outer mitochondrial membrane, had no impact on PFOS-triggered mitochondrial iron overload, whereas restraining VDAC2/3 relieved this condition. Although silencing VDAC2 relieved PFOS-induced mitochondrial iron overload, it had no effect on PFOS-triggered lysosomal iron overload. Silencing VDAC3 alleviated PFOS-mediated mitochondrial iron overload and led to an additional increase in lysosomal iron. Therefore, we regarded VDAC3 as the specific VDACs subtype that mediated the lysosomes-mitochondria iron transfer. Additionally, in the presence of PFOS, an enhanced association between TRPML1 and VDAC3 was found in mice liver tissue and L-O2 cells. Our research unveils a novel regulatory mechanism of autophagy on the iron homeostasis and the effect of TRPML1-VDAC3 interaction on lysosomes-mitochondria iron transfer, giving an explanation of PFOS-induced ferroptosis and shedding some light on the role of classic calcium channels in iron transmission.

2.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850699

RESUMEN

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Asunto(s)
Ácidos Alcanesulfónicos , Autofagia , Calcio , Coenzima A Ligasas , Ferroptosis , Fluorocarburos , Enfermedad del Hígado Graso no Alcohólico , Ferroptosis/efectos de los fármacos , Fluorocarburos/toxicidad , Animales , Ácidos Alcanesulfónicos/toxicidad , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Autofagia/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular , Hepatocitos/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 281: 116647, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944014

RESUMEN

As a persistent organic pollutant, perfluorooctane sulfonate (PFOS) has a serious detrimental impact on human health. It has been suggested that PFOS is associated with liver inflammation. However, the underlying mechanisms are still unclear. Here, PFOS was found to elevate the oligomerization tendency of voltage-dependent anion channel 1 (VDAC1) in the mice liver and human normal liver cells L-02. Inhibition of VDAC1 oligomerization alleviated PFOS-induced nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome activation. Cytoplasmic membrane VDAC1 translocated to mitochondria was also observed in response to PFOS. Therefore, the oligomerization of VDAC1 occurred mainly in the mitochondria. VDAC1 was found to interact with the ATP synthase beta subunit (ATP5B) under PFOS treatment. Knockdown of ATP5B or immobilization of ATP5B to the cytoplasmic membrane alleviated the increased VDAC1 oligomerization and NLRP3 inflammasome activation. Therefore, our results suggested that PFOS induced NLRP3 inflammasome activation through VDAC1 oligomerization, a process dependent on ATP5B to transfer VDAC1 from the plasma membrane to the mitochondria. The findings offer novel perspectives on the activation of the NLRP3 inflammasome, the regulatory mode on VDAC1 oligomerization, and the mechanism of PFOS toxicity.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Canal Aniónico 1 Dependiente del Voltaje , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Ácidos Alcanesulfónicos/toxicidad , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Fluorocarburos/toxicidad , Humanos , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo
5.
Ecotoxicol Environ Saf ; 278: 116435, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714084

RESUMEN

The compound known as Sodium arsenite (NaAsO2), which is a prevalent type of inorganic arsenic found in the environment, has been strongly associated with liver fibrosis (LF), a key characteristic of nonalcoholic fatty liver disease (NAFLD), which has been demonstrated in our previous study. Our previous research has shown that exposure to NaAsO2 triggers the activation of hepatic stellate cells (HSCs), a crucial event in the development of LF. However, the molecular mechanism is still unknown. N6-methyladenosine (m6A) modification is the most crucial post-transcriptional modification in liver disease. Nevertheless, the precise function of m6A alteration in triggering HSCs and initiating LF caused by NaAsO2 remains unknown. Here, we found that NaAsO2 induced LF and HSCs activation through TGF-ß/Smad signaling, which could be reversed by TGF-ß1 knockdown. Furthermore, NaAsO2 treatment enhanced the m6A modification level both in vivo and in vitro. Significantly, NaAsO2 promoted the specific interaction of METTL14 and IGF2BP2 with TGF-ß1 and enhanced the TGF-ß1 mRNA stability. Notably, NaAsO2-induced TGF-ß/Smad pathway and HSC-t6 cells activation might be avoided by limiting METTL14/IGF2BP2-mediated m6A modification. Our findings showed that the NaAsO2-induced activation of HSCs and LF is made possible by the METTL14/IGF2BP2-mediated m6A methylation of TGF-ß1, which may open up new therapeutic options for LF brought on by environmental hazards.


Asunto(s)
Adenosina , Arsenitos , Células Estrelladas Hepáticas , Cirrosis Hepática , Compuestos de Sodio , Factor de Crecimiento Transformador beta1 , Arsenitos/toxicidad , Células Estrelladas Hepáticas/efectos de los fármacos , Compuestos de Sodio/toxicidad , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Adenosina/análogos & derivados , Metiltransferasas/genética , Metiltransferasas/metabolismo , Masculino , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal/efectos de los fármacos , Ratones , Humanos , Ratones Endogámicos C57BL
6.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626609

RESUMEN

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Asunto(s)
Ácidos Alcanesulfónicos , Autofagia , Calcio , Fluorocarburos , Resistencia a la Insulina , Hígado , Lisosomas , Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Animales , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Autofagia/efectos de los fármacos , Calcio/metabolismo , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Contaminantes Ambientales/toxicidad , Canales Catiónicos TRPM/metabolismo , Ratones Endogámicos C57BL
7.
Eur J Cancer ; 199: 113528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218157

RESUMEN

BACKGROUND: Extent of resection (EOR) in glioma contributes to longer survival. The purpose of NCT01479686 was to prove whether intraoperative magnetic resonance imaging (iMRI) increases EOR in glioma surgery and benefit survival. METHODS: Patients were randomized (1:1) to receive the iMRI (n = 161) or the conventional neuronavigation (n = 160). The primary endpoint was gross total resection (GTR); secondary outcomes reported were progression-free survival (PFS), overall survival (OS), and safety. RESULTS: 188 high-grade gliomas (HGGs) and 133 low-grade gliomas (LGGs) were enrolled. GTR was 83.85% in the iMRI group vs. 50.00% in the control group (P < 0.0001). In 321 patients, the median PFS (mPFS) was 65.12 months in the iMRI group and 61.01 months in the control group (P = 0.0202). For HGGs, mPFS was improved in the iMRI group (19.32 vs. 13.34 months, P = 0.0015), and a trend of superior OS compared with control was observed (29.73 vs. 25.33 months, P = 0.1233). In the predefined eloquent area HGG subgroup, mPFS, and mOS were 20.47 months and 33.58 months in the iMRI vs. 12.21 months and 21.16 months in the control group (P = 0.0098; P = 0.0375, respectively). From the exploratory analyses of HGGs, residual tumor volume (TV) < 1.0 cm3 decreased the risk of survival (mPFS: 18.99 vs. 9.43 months, P = 0.0055; mOS: 29.77 vs. 18.10 months, P = 0.0042). LGGs with preoperative (pre-OP) TV > 43.1 cm3 and postoperative (post-OP) TV > 4.6 cm3 showed worse OS (P= 0.0117) CONCLUSIONS: It showed that iMRI significantly increased EOR and indicated survival benefits for HGGs, particularly eloquent HGGs. Residual TV in either HGGs or LGGs is a prognostic factor for survival.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Estudios Retrospectivos , Monitoreo Intraoperatorio/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Procedimientos Neuroquirúrgicos/efectos adversos , Procedimientos Neuroquirúrgicos/métodos , Imagen por Resonancia Magnética/métodos
8.
Acta Neurochir (Wien) ; 166(1): 53, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289484

RESUMEN

BACKGROUND: Due to their crucial functional location, surgical treatment of brainstem arteriovenous malformations (AVMs) has always been challenging. For unruptured AVMs, we can determine whether radiological therapy, interventional treatment, or surgical resection is feasible based on the AVM structure. However, for ruptured AVMs, microsurgical resection and interventional embolization are effective methods to prevent further rupture. In the microsurgical resection of AVMs, we usually use a hybrid operation to confirm the AVM structure and determine if the AVM is completely resected during the surgery. METHOD: We report a case of juvenile ruptured brainstem AVM resection. The right lateral position and left suboccipital retrosigmoid approach were used. We established an interventional approach via left radial artery and set a microcatheter in the feeding artery. Methylene blue injection via a microcatheter showed the AVM structure, and we totally resected the brainstem AVM under electrophysiological monitoring and navigation. Intraoperative angiography was performed to ensure complete resection without residual nidus. CONCLUSION: This case demonstrates that the trans-radial approach is convenient and safe for special positions in hybrid operations. Methylene blue injection via a microcatheter in the feeding artery provides clearer visualization of the AVM structure under the microscope.


Asunto(s)
Malformaciones Arteriovenosas , Arteria Radial , Humanos , Angiografía , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/cirugía , Azul de Metileno , Arteria Radial/diagnóstico por imagen , Arteria Radial/cirugía , Adolescente
9.
Ecotoxicol Environ Saf ; 268: 115711, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979351

RESUMEN

Di-2-ethylhexyl phthalate (DEHP), as a common endocrine disrupting chemicals, can induce toxicity to reproductive system. However, the mechanism remains to be explored. In our study, DEHP exposure induced testicular injury in rats. The high throughput transcriptional sequencing was performed to identify differentially expressed genes (DEGs) between the treatment and control groups. KEGG analysis revealed that DEGs were enriched in apoptosis, PPARα, and ER stress pathway. DEHP up-regulated the expression of PPARα, Bax, Bim, caspase-4. GRP78, PERK, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. This view has also been confirmed in TM3 and TM4 cells. In vitro, after pre-treatment with GW6471 (an inhibitor of PPARα) or GSK (an inhibitor of PERK), the apoptosis was inhibited and mitochondrial dysfunction was improved. Moreover, the improvement of mitochondrial dysfunction decreased the expression of PERK pathway by using SS-31(a protective agent for mitochondrial function). Interestingly, ER stress promoted the accumulation of ROS by ERO1L (the downstream of CHOP during ER stress), and the ROS further aggravated the ER stress, thus forming a feedback loop during the apoptosis. In this process, a vicious cycle consisting of PERK, eIF2α, ATF4, CHOP, ERO1L, ROS was involved. Taken together, our results suggested that mitochondrial dysfunction and ER stress-ROS feedback loop caused by PPARα activation played a crucial role in DEHP-induced apoptosis. This work provides insight into the mechanism of DEHP-induced reproductive toxicity.


Asunto(s)
Dietilhexil Ftalato , Ratas , Animales , Dietilhexil Ftalato/toxicidad , PPAR alfa/genética , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Apoptosis/genética , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo
10.
Int J Surg ; 109(12): 4062-4072, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37755386

RESUMEN

BACKGROUND: The pineal region tumors are challenging for neurosurgeons and can lead to secondary hydrocephalus. The introduction of the exoscope has provided clinical interventions with high image quality and an ergonomic system for pineal region tumor operations. In this study, the authors describe the exoscopic approach used to facilitate the surgical resection of pineal region tumors and relieve hydrocephalus. MATERIALS AND METHODS: In this retrospective cohort study, we consecutively reviewed the clinical and radiological data of 25 patients with pineal region lesions who underwent three-dimensional exoscopic tumor resection at a single center. RESULTS: The patient cohort consisted of 16 males and 9 females, with an average age of 34.6 years (range, 6-62 years; 8 cases aged ≤18). Pathological examination confirmed eight pineal gland tumors, four gliomas, nine germ cell neoplasms, two ependymomas, and two metastatic tumors. Preoperative hydrocephalus was present in 23 patients. Prior to tumor resection, external ventricular drainage (EVD) with Ommaya reservoir implantation was performed in 17 patients. Two patients received preoperative endoscopic third ventriculostomy (ETV), and five patients received a ventriculoperitoneal (VP) shunt, including one who received both procedures. Gross total resection was achieved in 19 patients (76%) in the 'head-up' park bench position using the exoscope. Eight patients (31.6%) with third ventricle invasion received subtotal resection, mainly in glioma cases, which was higher than those without invasion (0%), but not statistically significant ( P =0.278, Fisher's exact test). No new neurological dysfunction was observed after surgery. Two patients (8%) developed intracranial and pulmonary infections, and two patients (8%) suffered from pneumothorax. Hydrocephalus was significantly relieved in all patients postoperatively, and four patients with relapse hydrocephalus were cured during the long-term follow-up. Postoperative adjuvant management was recommended for indicated patients, and a mean follow-up of 24.8±14.3 months showed a satisfied outcome. CONCLUSIONS: The exoscope is a useful tool for pineal region tumor resection and hydrocephalus relief, particularly with posterior third ventricle invasion, as total resection could be achieved without obvious complication. The special superiority of the exoscope for the indicated pineal region tumors should be highlighted.


Asunto(s)
Neoplasias Encefálicas , Glioma , Hidrocefalia , Glándula Pineal , Pinealoma , Tercer Ventrículo , Masculino , Femenino , Humanos , Adulto , Pinealoma/cirugía , Pinealoma/complicaciones , Pinealoma/patología , Estudios Retrospectivos , Resultado del Tratamiento , Recurrencia Local de Neoplasia/cirugía , Glándula Pineal/cirugía , Glándula Pineal/patología , Glioma/cirugía , Ventriculostomía/efectos adversos , Ventriculostomía/métodos , Tercer Ventrículo/patología , Tercer Ventrículo/cirugía , Hidrocefalia/etiología , Hidrocefalia/cirugía , Neoplasias Encefálicas/cirugía
11.
Environ Sci Pollut Res Int ; 30(49): 107703-107715, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37740811

RESUMEN

Prolonged exposure to arsenic can cause nonalcoholic steatohepatitis (NASH). The NOD-like receptor protein 3 (NLRP3) inflammasome plays an essential role in the process of NASH. However, the mechanism by which arsenic promotes NLRP3 expression remains unclear. Three-month NaAsO2 gavage led to the nuclear factor-κB (NF-κB) signaling pathway activation and NASH. Additionally, NaAsO2 upregulated the level of Filamin A (FLNA) and pyroptosis, thereby activating the NLRP3 inflammasome in SD rat liver. Using FLNA siRNA, NASH-associated inflammation and pyroptosis were clearly mitigated by reducing activation of the NLRP3 inflammasome. Furthermore, arsenic treatment facilitated activation of the NF-κB signaling pathway and promoted p-p65 translocation into the nucleus. Chromatin immunoprecipitation (Ch-IP) assay indicated that FLNA promoted p65 binding to the NLRP3 gene and upregulated the transcription of NLRP3, ultimately leading to pyroptosis and NASH. Our findings indicate that FLNA and pyroptosis are strongly associated with NASH induced by NaAsO2. Collectively, the findings of this study indicated that FLNA mediates NF-κB signaling pathway-induced activation of the NLRP3 inflammasome and ultimately activates pyroptosis and NASH upon NaAsO2 exposure. This information may be useful for improving therapeutic strategies against arsenic-induced NASH.


Asunto(s)
Arsénico , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Inflamasomas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Proteínas NLR , Filaminas , Ratas Sprague-Dawley
12.
Sci Total Environ ; 905: 167202, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730054

RESUMEN

Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.


Asunto(s)
Arsénico , Ferroptosis , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Factores de Transcripción/metabolismo , Arsénico/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Metilación , Insulina , Glutatión Transferasa/metabolismo
13.
NPJ Precis Oncol ; 7(1): 97, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741941

RESUMEN

Astrocytoma and glioblastoma (GB) are reclassified subtypes of adult diffuse gliomas based on distinct isocitrate dehydrogenase (IDH) mutation in the fifth edition of the WHO Classification of Tumors of the Central Nervous System. The recurrence of gliomas is a common and inevitable challenge, and analyzing the distinct genomic alterations in astrocytoma and GB could provide insights into their progression. This study conducted a longitudinal investigation, utilizing whole-exome sequencing, on 65 paired primary/recurrent gliomas. It examined chromosome arm aneuploidies, copy number variations (CNVs) of cancer-related genes and pathway enrichments during the relapse. The veracity of these findings was verified through the integration of our data with multiple public resources and by corroborative immunohistochemistry (IHC). The results revealed a greater prevalence of aneuploidy changes and acquired CNVs in recurrent lower grade astrocytoma than in relapsed grade 4 astrocytoma and GB. Larger aneuploidy changes were predictive of an unfavorable prognosis in lower grade astrocytoma (P < 0.05). Further, patients with acquired gains of 1q, 6p or loss of 13q at recurrence had a shorter overall survival in lower grade astrocytoma (P < 0.05); however, these prognostic effects were confined in grade 4 astrocytoma and GB. Moreover, acquired gains of 12 genes (including VEGFA) on 6p during relapse were associated with unfavorable prognosis for lower grade astrocytoma patients. Notably, elevated VEGFA expression during recurrence corresponded to poorer survival, validated through IHC and CGGA data. To summarize, these findings offer valuable insights into the progression of gliomas and have implications for guiding therapeutic approaches during recurrence.

14.
Biomed Pharmacother ; 165: 115192, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37487443

RESUMEN

N6-methyladenosine (m6A) methylation modification is one of the most prevalent epigenetic modifications of eukaryotic RNA. m6A methylation is widely associated with many biological processes through the modification of RNA metabolism and is associated with multiple disease states. As a newly discovered regulatory cell death in recent years, ferroptosis is an iron-dependent cell death characterized by excessive lipid peroxidation. Emerging evidence supports that ferroptosis has a significant role in the progression of diverse diseases. Besides, the key regulators of ferroptosis exhibit aberrant m6A levels under different pathological conditions. However, the correlation between m6A-modified ferroptosis and multiple diseases has not been well elucidated. In this review, we summarized the functions of m6A in ferroptosis, which are associated with the initiation and progression of multiple diseases. Investigating the role of m6A in ferroptosis might both facilitate a better understanding of the pathogenesis of these diseases and provide new opportunities for targeted treatment.


Asunto(s)
Adenina , Progresión de la Enfermedad , Ferroptosis , Metilación de ARN , ARN , ARN/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Unión Proteica , Humanos
15.
Front Oncol ; 13: 1104610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182187

RESUMEN

Background: To understand the pathological correlations of multi-b-value diffusion-weighted imaging (MDWI) stretched-exponential model (SEM) parameters of α and diffusion distribution index (DDC) in patients with glioma. SEM parameters, as promising biomarkers, played an important role in histologically grading gliomas. Methods: Biopsy specimens were grouped as high-grade glioma (HGG) or low-grade glioma (LGG). MDWI-SEM parametric mapping of DDC1500, α1500 fitted by 15 b-values (0-1,500 sec/mm2)and DDC5000 and α5000 fitted by 22 b-values (0-5,000 sec/mm2) were matched with pathological samples (stained by MIB-1 and CD34) by coregistered localized biopsies, and all SEM parameters were correlated with these pathological indices pMIB-1(percentage of MIB-1 expression positive rate) and CD34-MVD (CD34 expression positive microvascular density for each specimen). The two-tailed Spearman's correlation was calculated for pathological indexes and SEM parameters, as well as WHO grades and SEM parameters. Results: MDWI-derived α1500 negatively correlated with CD34-MVD in both LGG (6 specimens) and HGG (26 specimens) (r=-0.437, P =0.012). MDWI-derived DDC1500 and DDC5000 negatively correlated with MIB-1 expression in all glioma patients (P<0.05). WHO grades negatively correlated with α1500(r=-0.485; P=0.005) and α5000(r=-0.395; P=0.025). Conclusions: SEM-derived DDC and α are significant in histologically grading gliomas, DDC may indicate the proliferative ability, and CD34 stained microvascular perfusion may be an important determinant of water diffusion inhomogeneity α in glioma.

16.
Front Oncol ; 13: 1089923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035157

RESUMEN

Cerebral neoplasms like gliomas may cause intracranial pressure increasing, neural tract deviation, infiltration, or destruction in peritumoral areas, leading to neuro-functional deficits. Novel tracking technology, such as DTI, can objectively reveal and visualize three-dimensional white matter trajectories; in combination with intraoperative navigation, it can help achieve maximum resection whilst minimizing neurological deficit. Since the reconstruction of DTI raw data largely relies on the technical engineering and anatomical experience of the operator; it is time-consuming and prone to operator-induced bias. Here, we develop new user-friendly software to automatically segment and reconstruct functionally active areas to facilitate precise surgery. In this pilot trial, we used an in-house developed software (DiffusionGo) specially designed for neurosurgeons, which integrated a reliable diffusion-weighted image (DWI) preprocessing pipeline that embedded several functionalities from software packages of FSL, MRtrix3, and ANTs. The preprocessing pipeline is as follows: 1. DWI denoising, 2. Gibbs-ringing removing, 3. Susceptibility distortion correction (process if opposite polarity data were acquired), 4. Eddy current and motion correction, and 5. Bias correction. Then, this fully automatic multiple assigned criteria algorithms for fiber tracking were used to achieve easy modeling and assist precision surgery. We demonstrated the application with three language-related cases in three different centers, including a left frontal, a left temporal, and a left frontal-temporal glioma, to achieve a favorable surgical outcome with language function preservation or recovery. The DTI tracking result using DiffusionGo showed robust consistency with direct cortical stimulation (DCS) finding. We believe that this fully automatic processing pipeline provides the neurosurgeon with a solution that may reduce time costs and operating errors and improve care quality and surgical procedure quality across different neurosurgical centers.

17.
Eur Radiol ; 33(8): 5236-5246, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36941492

RESUMEN

OBJECTIVES: To explore the correlations between histopathologic findings and intravoxel incoherent motion (IVIM)-derived perfusion and diffusion parameters in brain gliomas. METHODS: Thirty-two biopsy samples from twenty-one patients with newly diagnosed gliomas from a previous prospective cohort study were retrospectively analyzed. All patients underwent diffusion-weighted MRI with 22 b values (0-5000 s/mm2), followed by intraoperative MR-guided biopsy surgery and surgical resection. All 32 biopsy samples underwent immunohistochemical staining followed by quantitative analysis of cell density (cellularity), percent of MIB-1 (Ki67)-positive expression (pMIB-1), number of CD34-stained vessels (CD34-MVD), and percent of VEGF-positive expressing cells (pVEGF) using a multispectral phenotyping microscope. Based on the co-registered localized biopsy, correlation analysis was performed between the IVIM-derived biexponential model-based parameters (Dfast1500 and Dfast5000, Dslow1500 and Dslow5000, PF1500 and PF5000) and the above four pathological biomarkers and glioma grades. RESULTS: Significant positive correlations were revealed between Dfast5000 and pVEGF (rho (r) = 0.466, p = 0.007), and Dfast1500 and pVEGF (r = 0.371, p = 0.037). A significant negative correlation was revealed between PF5000 with pMIB-1 (r = - 0.456, p = 0.01). Moderate to good positive correlations were shown between Dfast5000 and glioma grades (r = 0.509, p = 0.003) and Dfast1500 and glioma grades (r = 0.476, p = 0.006). CONCLUSIONS: IVIM-DWI-derived Dfast and PF correlate, respectively, with intratumor pVEGF and pMIB-1. When using the wide-high b value scheme, IVIM-derived Dfast and PF tend to demonstrate better efficacy in evaluating malignancy-related characteristics such as angiogenesis and cellular proliferation in gliomas. KEY POINTS: • Intravoxel incoherent motion-diffusion-weighted imaging (IVIM-DWI)-derived fast diffusion (Dfast) and perfusion fraction (PF) can quantitatively reflect intratumor pVEGF and pMIB-1. • IVIM-DWI-derived Dfast and PF tend to demonstrate better efficacy in evaluating glioma malignancy when an optimized scheme is used. • IVIM-DWI-derived Dfast5000 and PF5000 are promising non-invasive parameters correlating with pVEGF and pMIB-1 in gliomas.


Asunto(s)
Glioma , Factor A de Crecimiento Endotelial Vascular , Humanos , Antígeno Ki-67 , Estudios de Cohortes , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Perfusión , Biopsia , Encéfalo/patología
18.
Neurosurgery ; 93(1): 224-232, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862952

RESUMEN

BACKGROUND: To date, few data are available on the cognitive function of patients with vestibular schwannoma (VS) before treatment. OBJECTIVE: To provide a cognitive profile of patients with VS. METHODS: This cross-sectional observational study recruited 75 patients with an untreated VS and 60 age-, sex-, and education-matched healthy control subjects. A set of neuropsychological tests were administered to each participant. RESULTS: Compared with the matched controls, patients with VS exhibited impaired general cognitive function, memory, psychomotor speed, visuospatial ability, attention and processing speed, and executive function. The subgroup analyses displayed that patients with severe-to-profound unilateral hearing loss were more cognitively impaired than patients with no-to-moderate unilateral hearing loss. In addition, patients with right-sided VS scored worse than those with left-sided VS on tests of memory, attention and processing speed, and executive function. No differences were observed in cognitive performance between patients with or without brainstem compression and those with or without tinnitus. We also found that worse hearing and longer hearing loss duration were associated with poorer cognitive performance in patients with VS. CONCLUSION: The findings of this study provide evidence for cognitive impairment in patients with untreated VS. It can thus be said that including cognitive assessment in the routine clinical management of patients with VS may facilitate more appropriate clinical decision-making and improve patients' quality of life.


Asunto(s)
Pérdida Auditiva Unilateral , Neuroma Acústico , Humanos , Neuroma Acústico/complicaciones , Estudios Transversales , Calidad de Vida , Cognición , Pruebas Neuropsicológicas
19.
Ecotoxicol Environ Saf ; 253: 114662, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801541

RESUMEN

In general populations, insulin resistance (IR) is related to perfluorooctane sulfonate (PFOS), a persistent organic pollutant. However, the underlying mechanism remains unclear. In this study, PFOS induced mitochondrial iron accumulation in the liver of mice and human hepatocytes L-O2. In the PFOS-treated L-O2 cells, mitochondrial iron overload preceded the occurrence of IR, and pharmacological inhibition of mitochondrial iron relieved PFOS-caused IR. Both transferrin receptor 2 (TFR2) and ATP synthase ß subunit (ATP5B) were redistributed from the plasma membrane to mitochondria with PFOS treatment. Inhibiting the translocation of TFR2 to mitochondria reversed PFOS-induced mitochondrial iron overload and IR. In the PFOS-treated cells, ATP5B interacted with TFR2. Stabilizing ATP5B on the plasma membrane or knockdown of ATP5B disturbed the translocation of TFR2. PFOS inhibited the activity of plasma-membrane ATP synthase (ectopic ATP synthase, e-ATPS), and activating e-ATPS prevented the translocation of ATP5B and TFR2. Consistently, PFOS induced ATP5B/TFR2 interaction and redistribution of ATP5B and TFR2 to mitochondria in the liver of mice. Thus, our results indicated that mitochondrial iron overload induced by collaborative translocation of ATP5B and TFR2 was an up-stream and initiating event for PFOS-related hepatic IR, providing novel understandings of the biological function of e-ATPS, the regulatory mechanism for mitochondrial iron and the mechanism underlying PFOS toxicity.


Asunto(s)
Resistencia a la Insulina , Sobrecarga de Hierro , Humanos , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
20.
Cell Biol Toxicol ; 39(5): 2165-2181, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35226250

RESUMEN

N6-methyladenosine (m6A) messenger RNA methylation is the most widespread gene regulatory mechanism affecting liver functions and disorders. However, the relationship between m6A methylation and arsenic-induced hepatic insulin resistance (IR), which is a critical initiating event in arsenic-induced metabolic syndromes such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), remains unclear. Here, we showed that arsenic treatment facilitated methyltransferase-like 14 (METTL14)-mediated m6A methylation, and that METTL14 interference reversed arsenic-impaired hepatic insulin sensitivity. We previously showed that arsenic-induced NOD-like receptor protein 3 (NLRP3) inflammasome activation contributed to hepatic IR. However, the regulatory mechanisms underlying the role of arsenic toward the post-transcriptional modification of NLRP3 remain unclear. Here, we showed that NLRP3 mRNA stability was enhanced by METTL14-mediated m6A methylation during arsenic-induced hepatic IR. Furthermore, we demonstrated that arsenite methyltransferase (AS3MT), an essential enzyme in arsenic metabolic processes, interacted with NLRP3 to activate the inflammasome, thereby contributing to arsenic-induced hepatic IR. Also, AS3MT strengthened the m6A methylase association with NLRP3 to stabilize m6A-modified NLRP3. In summary, we showed that AS3MT-induced m6A modification critically regulated NLRP3 inflammasome activation during arsenic-induced hepatic IR, and we identified a novel post-transcriptional function of AS3MT in promoting arsenicosis.


Asunto(s)
Arsénico , Resistencia a la Insulina , Humanos , Arsénico/toxicidad , Arsénico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inflamasomas/metabolismo , Hígado , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...