Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 126: 106821, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35988512

RESUMEN

In vivo ultrasound imaging with phased array transducers is of great importance for both clinical application and biomedical research. In this work, relaxor ferroelectric PMN-0.28PT single crystal with very high piezoelectric constant d33 ≥ 2000 pC/N and electromechanical coupling coefficient k33 âˆ¼ 0.92 is used to fabricate high-frequency phased array transducers. A 128-element 20-MHz phased array transducer is successfully fabricated, and the optimized performance of -6 dB average bandwidth of âˆ¼ 84 % and insertion loss of -43 dB are achieved. The axial and lateral imaging resolutions of the transducer are determined to be 81 µm and 243 µm, respectively. With Verasonics image platform, in vivo fisheye images are acquired, demonstrating the potential application of our developed high-frequency phased array transducer for biomedical research on small animals.


Asunto(s)
Transductores , Animales , Diseño de Equipo , Ultrasonografía
2.
Ultrasonics ; 70: 29-33, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27125558

RESUMEN

The goal of this work is to demonstrate the application of anodic aluminum oxide (AAO) template as matching layer of ultrasonic transducer. Quarter-wavelength acoustic matching layer is known as a vital component in medical ultrasonic transducers to compensate the acoustic impedance mismatch between piezoelectric element and human body. The AAO matching layer is made of anodic aluminum oxide template filled with epoxy resin, i.e. AAO-epoxy 1-3 composite. Using this composite as the first matching layer, a ∼12MHz ultrasonic transducer based on soft lead zirconate titanate piezoelectric ceramic is fabricated, and pulse-echo measurements show that the transducer exhibits very good performance with broad bandwidth of 68% (-6dB) and two-way insertion loss of -22.7dB. Wire phantom ultrasonic image is also used to evaluate the transducer's performance, and the results confirm the process feasibility and merit of AAO-epoxy composite as a new matching material for ultrasonic transducer application. This matching scheme provides a solution to address the problems existing in the conventional 0-3 composite matching layer and suggests another useful application of AAO template.

3.
Ultrasonics ; 56: 227-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25108608

RESUMEN

High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 µm and 131 µm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 µm and 125 µm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications.


Asunto(s)
Transductores , Ultrasonografía Intervencional/instrumentación , Cerámica , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...