Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cyborg Bionic Syst ; 5: 0152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257898

RESUMEN

Cardiovascular diseases are a prominent cause of mortality, emphasizing the need for early prevention and diagnosis. Utilizing artificial intelligence (AI) models, heart sound analysis emerges as a noninvasive and universally applicable approach for assessing cardiovascular health conditions. However, real-world medical data are dispersed across medical institutions, forming "data islands" due to data sharing limitations for security reasons. To this end, federated learning (FL) has been extensively employed in the medical field, which can effectively model across multiple institutions. Additionally, conventional supervised classification methods require fully labeled data classes, e.g., binary classification requires labeling of positive and negative samples. Nevertheless, the process of labeling healthcare data is time-consuming and labor-intensive, leading to the possibility of mislabeling negative samples. In this study, we validate an FL framework with a naive positive-unlabeled (PU) learning strategy. Semisupervised FL model can directly learn from a limited set of positive samples and an extensive pool of unlabeled samples. Our emphasis is on vertical-FL to enhance collaboration across institutions with different medical record feature spaces. Additionally, our contribution extends to feature importance analysis, where we explore 6 methods and provide practical recommendations for detecting abnormal heart sounds. The study demonstrated an impressive accuracy of 84%, comparable to outcomes in supervised learning, thereby advancing the application of FL in abnormal heart sound detection.

2.
IEEE J Biomed Health Inform ; 28(9): 5055-5066, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39012744

RESUMEN

Ubiquitous sensing has been widely applied in smart healthcare, providing an opportunity for intelligent heart sound auscultation. However, smart devices contain sensitive information, raising user privacy concerns. To this end, federated learning (FL) has been adopted as an effective solution, enabling decentralised learning without data sharing, thus preserving data privacy in the Internet of Health Things (IoHT). Nevertheless, traditional FL requires the same architectural models to be trained across local clients and global servers, leading to a lack of model heterogeneity and client personalisation. For medical institutions with private data clients, this study proposes Fed-MStacking, a heterogeneous FL framework that incorporates a stacking ensemble learning strategy to support clients in building their own models. The secondary objective of this study is to address scenarios involving local clients with data characterised by inconsistent labelling. Specifically, the local client contains only one case type, and the data cannot be shared within or outside the institution. To train a global multi-class classifier, we aggregate missing class information from all clients at each institution and build meta-data, which then participates in FL training via a meta-learner. We apply the proposed framework to a multi-institutional heart sound database. The experiments utilise random forests (RFs), feedforward neural networks (FNNs), and convolutional neural networks (CNNs) as base classifiers. The results show that the heterogeneous stacking of local models performs better compared to homogeneous stacking.


Asunto(s)
Ruidos Cardíacos , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Humanos , Ruidos Cardíacos/fisiología , Algoritmos , Auscultación Cardíaca/métodos , Adulto
3.
IEEE Trans Biomed Eng ; 71(10): 2802-2813, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38700959

RESUMEN

OBJECTIVE: Early diagnosis of cardiovascular diseases is a crucial task in medical practice. With the application of computer audition in the healthcare field, artificial intelligence (AI) has been applied to clinical non-invasive intelligent auscultation of heart sounds to provide rapid and effective pre-screening. However, AI models generally require large amounts of data which may cause privacy issues. Unfortunately, it is difficult to collect large amounts of healthcare data from a single centre. METHODS: In this study, we propose federated learning (FL) optimisation strategies for the practical application in multi-centre institutional heart sound databases. The horizontal FL is mainly employed to tackle the privacy problem by aligning the feature spaces of FL participating institutions without information leakage. In addition, techniques based on deep learning have poor interpretability due to their "black-box" property, which limits the feasibility of AI in real medical data. To this end, vertical FL is utilised to address the issues of model interpretability and data scarcity. CONCLUSION: Experimental results demonstrate that, the proposed FL framework can achieve good performance for heart sound abnormality detection by taking the personal privacy protection into account. Moreover, using the federated feature space is beneficial to balance the interpretability of the vertical FL and the privacy of the data. SIGNIFICANCE: This work realises the potential of FL from research to clinical practice, and is expected to have extensive application in the federated smart medical system.


Asunto(s)
Ruidos Cardíacos , Humanos , Ruidos Cardíacos/fisiología , Procesamiento de Señales Asistido por Computador , Masculino , Bases de Datos Factuales , Aprendizaje Profundo , Adulto , Femenino , Algoritmos , Persona de Mediana Edad , Adulto Joven , Niño
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1045-1048, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086612

RESUMEN

Cardiovascular diseases (CVDs) have been ranked as the leading cause for deaths. The early diagnosis of CVDs is a crucial task in the medical practice. A plethora of efforts were given to the automated auscultation of heart sound, which leverages the power of computer audition to develop a cheap, non-invasive method that can be used at any time and anywhere for measuring the status of the heart. Nevertheless, previous works ignore an important factor, namely, the privacy of the user data. On the one hand, learnt models are always hungry for bigger data. On the other hand, it can be difficult to protect personal private information when collecting such large amount of data. In this dilemma, we propose a federated learning (FL) framework for the heart sound classification task. To the best of our knowledge, this is the first time to introduce FL to this field. We conducted multiple experiments, analysed the impact of data distribution across collaborative institutions on model quality and learning patterns, and verified the feasibility and effectiveness of FL based on real data. Non- independent identically distributed (Non-IID) data and model quality can be effectively improved by adding a strategy of globally sharing data.


Asunto(s)
Ruidos Cardíacos , Auscultación , Privacidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...