RESUMEN
This work demonstrates sulfonyl group-induced remote C(sp3)-N bond construction using a strategy of merging aryl radical-mediated halogen atom transfer and intramolecularly regioselective hydrogen atom transfer (HAT). A plethora of aliphatic sulfones, sulfonamides, and sulfonates are amenable and undergo regioselective C(sp3)-H amination by utilizing an iron salt at room temperature. This protocol involves iodine atom transfer, a HAT process enabled by an alkyl radical adjacent to a sulfonyl group, and amination mediated by an aryl diazonium salt.
RESUMEN
Traumatic brain injury (TBI) affects persons of all ages and is recognized as a major cause of death and disability worldwide; it also brings heavy life burden to patients and their families. The treatment of those with secondary injury after TBI is still scarce, however. Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism associated with various physiological processes, while the contribution of AS in treatment after TBI is poorly illuminated. In this study, we performed and analyzed the transcriptome and proteome datasets of brain tissue at multiple time points in a controlled cortical impact (CCI) mouse model. We found that AS, as an independent change against the transcriptional level, is a novel mechanism linked to cerebral edema after TBI. Bioinformatics analysis further indicated that the transformation of splicing isoforms after TBI was related to cerebral edema. Accordingly, we found that the fourth exon of transient receptor potential channel melastatin 4 (Trpm4) abrogated skipping at 72 h after TBI, resulting in a frameshift of the encoded amino acid and an increase in the proportion of spliced isoforms. Using magnetic resonance imaging (MRI), we have shown the numbers of 3nEx isoforms of Trpm4 may be positively correlated with volume of cerebral edema. Thus alternative splicing of Trpm4 becomes a noteworthy mechanism of potential influence on edema. In summary, alternative splicing of Trpm4 may drive cerebral edema after TBI. Trpm4 is a potential therapeutic targeting cerebral edema in patients with TBI.
Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Canales Catiónicos TRPM , Ratones , Animales , Edema Encefálico/genética , Edema Encefálico/tratamiento farmacológico , Empalme Alternativo/genética , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/patología , Isoformas de Proteínas/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismoRESUMEN
Microglial necroptosis exacerbates neurodegenerative diseases, central nervous system (CNS) injury, and demonstrates a proinflammatory process, but its contribution to subarachnoid hemorrhage (SAH) is poorly characterized. BCL-2 homologous antagonist-killer protein (Bak1), a critical regulatory molecule of endogenous apoptosis, can be involved in the pathologic process of necroptosis by regulating mitochondrial permeability. In this study, we revealed microglia undergo necroptosis after SAH in vivo and vitro. Western blot revealed that Bak1 was elevated at 24 h after SAH. Knocked down of Bak1 by adeno-associated virus attenuates microglial necroptosis, alleviates neuroinflammation, and improves neurologic function after SAH in mice. Furthermore, oxyhemoglobin (10 µM) induced necroptosis in BV2 microglia, increasing Bak1 expression and mediating proinflammatory phenotype transformation, exacerbating oxidative stress and neuroinflammation. Abrogating BV2 Bak1 could reduce necroptosis by down-regulating the expression of phosphorylated pseudokinase mixed lineage kinase domain-like protein (p-MLKL), then down-regulating proinflammatory phenotype gene expression. RNA-Seq showed that disrupting BV2 Bak1 down-regulates multiple immune and inflammatory pathways and ameliorates cell injury by elevating thrombospondin 1 (THBS1) expression. In summary, we identified a critical regulatory role for Bak1 in microglial necroptosis and neuroinflammation after SAH. Bak1 is expected to be a potential target for the treatment strategy of SAH.
Asunto(s)
Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea , Ratones , Animales , Microglía/metabolismo , Hemorragia Subaracnoidea/metabolismo , Necroptosis , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Targeting microglial activation has been shown to ameliorate early brain injury (EBI) after subarachnoid hemorrhage (SAH). Ferroptosis is a new form of programmed cell death after SAH, but these molecular features were not recognized as evidence of microglial function so far. In this study, we constructed microglial S100A8-specific knockdown and established the SAH model in vivo and in vitro. Multi-technology strategies, including high throughput sequencing, adeno-associated virus gene gene-editing and several molecular biotechnologies to validate the effects of S100A8 on microglial autophagy and ferroptosis after SAH. Our results revealed that the expression of S100A8 was significantly increased in brain tissue after SAH. Targeted microglial S100A8 inhibition improved neural function and neuronal apoptosis in mice after SAH. Further mechanism exploration found that favourable effects of S100A8 depletion in EBI may be through the inhibition of microglia autophagy-dependent ferroptosis. In conclusion, S100A8 may be a potential intervention target for microglial ferroptosis in EBI after SAH.
Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Animales , Autofagia , Lesiones Encefálicas/metabolismo , Ratones , Microglía/metabolismo , Hemorragia Subaracnoidea/metabolismoRESUMEN
Subcellular localization of transcripts is highly associated with regulation of gene expression, synthesis of protein, and also the development of the human brain cortex. Although many mechanisms are prevalent in the occurrence of neuroinflammation, the mechanisms based on differences in subcellular localization of transcripts have not been explored. To characterize the dynamic profile of nuclear and cytoplasmic transcripts during the progress of haemorrhage-induced neuroinflammation, we isolated nucleo-cytoplasmic RNA fractions of oxyhaemoglobin (oxy-Hb) treated microglia cells and sequenced both fractions. We discovered that cytoplasmic retained genes were the major forces to maintain the neuroinflammatory microenvironment with 10 hub genes and 40 conserved genes were identified. Moreover, antisense RNA Gm44096 and lincRNA Gm47270, which co-expressed with a crowd of inflammatory genes in the cytoplasm, were discovered as regulatory strategies for sustaining the neuroinflammatory microenvironment. Thus, our study provides a new perspective on understanding haemorrhage-induced neuroinflammation and also reveals a mechanism of lncRNA responsible for maintaining the neuroinflammatory microenvironment.
Asunto(s)
Núcleo Celular/metabolismo , Microambiente Celular/genética , Citoplasma/metabolismo , Enfermedades Neuroinflamatorias/etiología , Transporte de ARN , Animales , Línea Celular , Núcleo Celular/genética , Biología Computacional/métodos , Citoplasma/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Ontología de Genes , Hemorragia/complicaciones , Ratones , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , ARN Largo no Codificante/genéticaRESUMEN
Arterial hypertension is considered the most prevalent risk factor for stroke. Both pathophysiologic and clinical data previously acquired suggest a strong correlation between the hemodynamic nature of arterial hypertension and an increase in the risk of ischemic insult to tissues. However, the knowledge of specific molecular interactions between hypertension and ischemic stroke (IS) is limited. In this study, we performed systematic bioinformatics analysis of stroke-prone spontaneous hypertensive brain tissue samples of rats (GSE41452), middle cerebral artery occlusion of brain tissue samples of rats (GSE97537), and peripheral blood array data of IS patients (GSE22255). We identified that Fos, an immediate-early gene (IEG) that responds to alterations in arterial blood pressure, has a strong correlation with the occurrence and prognosis of IS. To further evaluate the potential function of Fos, the oxygen-glucose deprivation model and RNA sequencing of HT22 neuronal cells were performed. Consistent with the sequencing results, real-time quantitative PCR and Western blot indicate that Fos was elevated at 3 h and returned to normal levels at 6 h after oxygen-glucose deprivation. Knock-down of Fos by lentivirus significantly increased the oxidative stress level, neuronal apoptosis, and inhibited the mitochondrial function. In conclusion, Fos acts as an important link between hypertension and IS. Furthermore, Fos can be used as a potential biomarker for target therapy in the prevention of stroke among hypertensive patients and also potential treatment targeting apoptosis and oxidative stress after its onset.