Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Transl Med ; 20(1): 604, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527108

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) onset is a complex, organized biological process with multilevel regulation, and its physiopathological mechanisms are yet to be elucidated. This study aims to find out the key drivers and pathways involved in the pathogenesis of T2D through multi-omics analysis. METHODS: The datasets used in the experiments comprise three groups: (1) genomic (2) transcriptomic, and (3) epigenomic categories. Then, a series of bioinformatics technologies including Marker set enrichment analysis (MSEA), weighted key driver analysis (wKDA) was performed to identify key drivers. The hub genes were further verified by the Receiver Operator Characteristic (ROC) Curve analysis, proteomic analysis, and Real-time quantitative polymerase chain reaction (RT-qPCR). The multi-omics network was applied to the Pharmomics pipeline in Mergeomics to identify drug candidates for T2D treatment. Then, we used the drug-gene interaction network to conduct network pharmacological analysis. Besides, molecular docking was performed using AutoDock/Vina, a computational docking program. RESULTS: Module-gene interaction network was constructed using MSEA, which revealed a significant enrichment of immune-related activities and glucose metabolism. Top 10 key drivers (PSMB9, COL1A1, COL4A1, HLA-DQB1, COL3A1, IRF7, COL5A1, CD74, HLA-DQA1, and HLA-DRB1) were selected by wKDA analysis. Among these, COL5A1, IRF7, CD74, and HLA-DRB1 were verified to have the capability to diagnose T2D, and expression levels of PSMB9 and CD74 had significantly higher in T2D patients. We further predict the co-expression network and transcription factor (TF) binding specificity of the key driver. Besides, based on module interaction networks and key driver networks, 17 compounds are considered to possess T2D-control potential, such as sunitinib. CONCLUSIONS: We identified signature genes, biomolecular processes, and pathways using multi-omics networks. Moreover, our computational network analysis revealed potential novel strategies for pharmacologic interventions of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Redes Reguladoras de Genes , Humanos , Diabetes Mellitus Tipo 2/genética , Multiómica , Cadenas HLA-DRB1/genética , Proteómica , Simulación del Acoplamiento Molecular , Biología Computacional , Perfilación de la Expresión Génica
3.
Front Pharmacol ; 12: 714643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712134

RESUMEN

This research was designed to analyze the composition of immune cells in obesity and identify novel and potent drugs for obesity management by epigenetic and transcriptomic conjoint analysis. DNA methylation data set (GSE166611) and mRNA expression microarray (GSE18897) were obtained from the Gene Expression Omnibus database. A total of 72 objects (35 obese samples and 37 controls) were included in the study. Immune cell composition analysis, drug repositioning, and gene set enrichment analysis (GSEA) were performed using CIBERSORT, connectivity map (CMap), and GSEA tools. Besides, we performed a single-cell RNA-seq of the immune cells from whole blood samples obtained from one obese patient and one healthy control. mRNA levels of drug target genes were analyzed by qPCR assay in blood samples from six patients and six healthy controls. Immune cell composition analysis found that CD8 + T cells and NK cells were significantly lower in the obese group. 11 drugs/compounds are considered to possess obesity-control potential, such as atorvastatin. Moreover, the expression of drug targets (STAT3, MCL1, PMAIP1, SOD2, FOX O 3, FOS, FKBP5) in obese patients were higher than those in controls. In conclusion, immune cells are potential therapeutic targets for obesity. Our results also contribute to accelerate research on drug development of obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...