Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 275: 107063, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191072

RESUMEN

Diazepam (DZP) is a universally detected emerging pollutant in aquatic ecosystems. Although the sex-dependent effects of DZP on fish have been properly established, the underlying mechanisms remain unclear. In this study, zebrafish of both sexes were separately exposed to DZP (8 µg/L) for 21 days, and the alteration of the behaviors, brain amino acid neurotransmitter contents, and transcriptomic profiles were investigated. Although DZP exposure showed a sedative effect on both sexes, significantly reduced cumulative duration of high mobility and willingness to encounter the opposite sex were only observed in females. However, DZP significantly enhanced the brain levels of glutamate and glutamine in males but not in females. Transcriptome analysis identified more different expression genes (DEGs) in females (322 up-regulated and 311 down-regulated) than in males (138 up-regulated genes and 38 down-regulated). The DEGs in both sexes were significantly enriched in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway of the synaptic vesicle cycle, indicating a possible pathway for the sedative effects of DZP on zebrafish. DZP exhibited different or even opposing regulatory patterns on gene expression in the brains of females and males, providing some insights into its sex-dependent impacts on the behaviors and brain neurotransmitter contents in zebrafish. Moreover, enrichment analysis also suggested that DZP exposure may affect the oocyte maturation in female zebrafish, which highlights the need to study its reproductive and transgenerational toxicity to fish species.


Asunto(s)
Diazepam , Transcriptoma , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/genética , Femenino , Masculino , Diazepam/toxicidad , Contaminantes Químicos del Agua/toxicidad , Transcriptoma/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Conducta Animal/efectos de los fármacos , Factores Sexuales , Regulación de la Expresión Génica/efectos de los fármacos
2.
J Hazard Mater ; 478: 135548, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154483

RESUMEN

Thimerosal (THI) has become a significant source of organic mercury pollutants in aquatic ecosystems, but there is limited information regarding its adverse effects on fish. In this study, zebrafish embryos were exposed to THI at 0 (control), 5.0, and 50 ng/L from 0-5 days post fertilization (dpf), and variations in their survival, development, behavior, free amino acid contents, and the biochemical responses involved in monoaminergic systems were examined. Although THI exposure did not significantly affect the survival, heart rate, or hatching time of zebrafish embryos, it substantially increased swimming velocity (136-154 % of the control) and reduced exploratory behavior (141-142 % of the control) in zebrafish larvae at 5 dpf. Exposure also significantly altered the amino acid contents (51-209 % of the control) and monoamine levels (70-154 % of the control) in zebrafish larvae, some of which displayed significant correlations with behavioral traits. THI significantly elevated dopamine receptor gene expression and monoamine oxidase activity in zebrafish larvae. Adding extra phenylalanine or tryptophan to the E3 medium facilitates the recovery of zebrafish larvae from the abnormal behaviors induced by THI. These findings reveal for the first time that THI exposure at the level of ng/L is sufficient to induce neurobehavioral toxic effects in the early life stages of zebrafish, and disrupting amino acid homeostasis is a critical underlying mechanism. This study provides valuable insights into the toxicity of THI to fish and highlights the importance of assessing its potential risks to aquatic ecosystems.


Asunto(s)
Aminoácidos , Conducta Animal , Homeostasis , Timerosal , Contaminantes Químicos del Agua , Pez Cebra , Animales , Aminoácidos/metabolismo , Homeostasis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Timerosal/toxicidad , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Larva/metabolismo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/efectos de los fármacos
3.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061850

RESUMEN

Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological parameters and the expression patterns of photosynthesis-related and antioxidant-enzyme genes in the Chattonella marina complex to understand the biological meaning of diurnal rhythm. Under a light-dark cycle, Fv/Fm and expression of psbA, psbD, and 2-Cys prx showed significant increases in the light and decreases during the dark. These rhythms remained even under continuous dark conditions. DCMU suppressed the induction of psbA, psbD, and 2-Cys prx expression under both light regimes. Oxidative stress levels and H2O2 scavenging activities were relatively stable, and there was no significant correlation between H2O2 scavenging activities and antioxidant-enzyme gene expression. These results indicate that the Chattonella marina complex has developed mechanisms for efficient photosynthetic energy production in the light. Our results showed that this species has a diurnal rhythm and a biological clock. These phenomena are thought to contribute to the efficiency of physiological activities centered on photosynthesis and cell growth related to the diurnal vertical movement of this species.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124826, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029199

RESUMEN

Hypochlorite (ClO-) is recognized as a bioactive substance that plays a crucial role in various physiological and pathological processes. The increase of ClO- content in cells is a key factor in the early atherosclerosis lesions, which are closely linked to cardiovascular and cerebrovascular diseases. Therefore, the development of an efficient and sensitive method for detecting hypochlorite in tap water, serum, and living cells, including animal model in vivo is of paramount importance. In this study, a novel fluorescent probe (Cy-F) based on the cyanine group was designed for the specific detection of ClO-, demonstrating exceptional selectivity, high sensitivity, and rapid response. The probe successfully detected ClO- in tap water and serum with a limit of detection (LOD) of 2.93 × 10-7 M, showcasing excellent anti-interference capabilities. Notably, the probe exhibited good biocompatibility, low biological toxicity, and proved effective for detecting and analyzing ClO- in live cells and zebrafish. This newly developed probe offers a promising approach and valuable tool for detecting ClO- with biosafety considerations, paving the way for the design of functional probes tailored for future biomedical applications.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Ácido Hipocloroso , Límite de Detección , Pez Cebra , Ácido Hipocloroso/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Humanos , Carbocianinas/química , Espectrometría de Fluorescencia , Ratones , Células RAW 264.7
5.
Ambio ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822966

RESUMEN

Climate change and CO2 emissions are critical challenges for the environment and humanity. There is extensive literature on greenhouse gas (GHG) emissions, in particular CO2 emissions. However, comprehensive analyses focusing on electric vehicles (EVs) and their impact are lacking. This study fills this gap by conducting a bibliometric analysis of 1143 peer-reviewed studies from 1989 to 2023. We aimed to identify influential contributions, understand the field's structure, and reveal research gaps. Analysis included citation networks, research impact, authorship patterns, content, and publication trends. We utilized bibliometric techniques to identify the most dominant countries, institutions, authors, journals, articles, and thematic areas related to EVs and emissions. Additionally, we overviewed publications associated with key search terms. Guided by five research dimensions (EVs, emissions, adoption, policies, and infrastructures), we framed specific research questions. This research provides valuable insights for environmentalists, policymakers, regulators, and academic researchers, facilitating access to crucial data on EVs and emissions.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38838796

RESUMEN

Organophosphorus pesticides (OPs), such as chlorpyrifos (CPF), are the most commonly used pesticides worldwide. Considering that OPs will eventually enter aquatic ecosystems due to runoff from agricultural lands, accidental leakage, and other unforeseen emergencies, monitoring water pollution of those substances is crucial for environmental protection and public health. In this study, Japanese medaka (Oryzias latipes) were exposed to CPF (0.03, 0.06, and 0.12 mg/L) for 6 h, and the time-series variations in their locomotor behavior and vocal traits were investigated. Compared with that measured before exposure, significantly changed locomotor behavior and vocal traits in Japanese medaka exposed to CPF could be observed at 4 h after exposure and thereafter, and the pattern of behavioral changes depends on the CPF concentrations. Exposure to CPF also changed the frequency-sound pressure level curve of Japanese medaka at 6 h after exposure, especially at 0.12 mg/L. Moreover, CPF exposure could significantly inhibit the acetylcholinesterase (AChE) activity in the brains and eyes of medaka, which exhibited significant correlations with the variation of locomotor behavioral and vocal traits. Considering that inhibiting the AChE activity is the primary mechanism underlying the neurobehavioral toxicity of all OPs, our finding suggested that simultaneously monitoring changes in the locomotor behavioral and vocal traits has a high potential to reflect the pollution of organophosphorus substances.


Asunto(s)
Cloropirifos , Locomoción , Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , Cloropirifos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Locomoción/efectos de los fármacos , Vocalización Animal/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Insecticidas/toxicidad , Plaguicidas/toxicidad , Conducta Animal/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Encéfalo/efectos de los fármacos
7.
Talanta ; 276: 126286, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776778

RESUMEN

The improvement of dual-mode techniques was of particular interest to researchers, which might enhance the detection performance and applicability. Here, a dual-mode optical aptasensor (DO-aptasensor) platform based on exonuclease I (Exo I) cyclic digestion and synergistic enhancement strategy had proposed for zearalenone (ZEN). Following the preparation of dumbbell-shaped signal probe, the Exo I-based cyclic digestion amplification performed, and then the synergistic enhancement effect carried out to achieve the Poly-HRP-based colorimetry and FAM-SGI-based fluorescence. The efficient homogeneous system realized through the magnetic separation, while the signal interference further eliminated by the graphene oxide (GO). The LOD values were as low as 0.067 ng mL-1 for colorimetry mode and 0.009 ng mL-1 for fluorescence mode, which reduced 23-fold and 172-fold than ELASA by same ZEN-Apt. This promising platform gave rise to a dual-mode optical readout, improved sensitivity and positively correlated detection. Meanwhile, the DO-aptasensor also exhibited the acceptable specificity, desirable reliability and excellent practicability. This novel avenue of aptasensor platform hold great potential for dual-mode optical monitoring of other targets, which can further expand the application scope of Exo I-based signal amplification and synergistic enhancement effect.

8.
Aquat Toxicol ; 271: 106921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615580

RESUMEN

Thimerosal (THI) is the most widely used form of organic mercury in pharmaceutical and personal care products, and has become a major source of ethylmercury pollution in aquatic ecosystems. However, knowledge about its potential risk to aquatic species is limited. In this study, zebrafish were exposed to THI for 7 days, and variations in their behavioral traits, brain monoaminergic neurotransmitter contents, and related gene expression were investigated. After the 7-day exposure, THI reduced locomotor activity and thigmotaxis in males but not females. Exposure to THI increased the social interaction between females but decreased that between males. The THI exposure also significantly reduced the serotonin (5-HT), 5-hydroxyindoleacetic acid, dopamine (DA), and 3,4-dihydroxyphenylacetic acid contents in the brain of males, but only significantly decreased the DA content in females. Correlation analysis revealed that the neurochemical alterations in the brain of zebrafish play critical roles in the behavioral abnormalities induced by THI exposure. Moreover, THI also significantly altered the expression of some genes associated with the synthesis, metabolism, and receptor binding of 5-HT and DA in the brain of zebrafish. The differences in these gene expressions between female and male zebrafish exposed to THI seem to be an important mechanism underlying their sex-specific responses to this chemical. This is the first report on the sex-specific effects of THI on behaviors and brain monoaminergic neurotransmitter contents in zebrafish, which can further improve our understanding of its toxic effects on teleost.


Asunto(s)
Conducta Animal , Encéfalo , Timerosal , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/fisiología , Masculino , Femenino , Timerosal/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Conducta Animal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Serotonina/metabolismo , Dopamina/metabolismo , Monoaminas Biogénicas/metabolismo , Factores Sexuales , Caracteres Sexuales , Regulación de la Expresión Génica/efectos de los fármacos
9.
Chemosphere ; 353: 141643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447901

RESUMEN

There is global concern that microplastics may harm aquatic life. Here, we examined the effects of fine polystyrene microplastics (PS-MPs, 2-µm diameter, 0.1 mg/L, 2.5 × 107 particles/L) on the behavior and the microbiome (linked to brain-gut interaction) of a fish model using medaka, Oryzias latipes. We found that shoaling behavior was reduced in PS-MP-exposed medaka compared with control fish during the exposure period, but it recovered during a depuration period. There was no difference in swimming speed between the PS-MP-exposed and control groups during the exposure period. Analysis of the dominant bacterial population (those comprising ≥1% of the total bacterial population) in the gut of fish showed that exposure to PS-MPs tended to increase the relative abundance of the phylum Fusobacteria and the genus Vibrio. Furthermore, structural-equation modeling of gut bacteria on the basis of machine-learning data estimated strong relationship involved in the reduction of the functional bacterial species of minority (<1% of the total bacterial population) such as the genera Muribaculum (an undefined role), Aquaspirillum (a candidate for nitrate metabolism and magnetotactics), and Clostridium and Phascolarctobacterium (potential producers of short-chain fatty acids, influencing behavior by affecting levels of neurotransmitters) as a group of gut bacteria in association with PS-MP exposure. Our results suggest that fish exposure to fine microplastics may cause dysbiosis and ultimately cause social behavior disorders linked to brain-gut interactions. This effect could be connected to reduction of fish fitness in the ecosystem and reduced fish survival.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Poliestirenos/análisis , Microplásticos/toxicidad , Microplásticos/análisis , Plásticos , Disbiosis , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 912: 169173, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38064809

RESUMEN

In mammals, parental exposure to amitriptyline (AMI) has been proven to contribute to congenital disabilities in their offspring. However, no studies have paid attention to the adverse effects of parental exposure to amitriptyline on fish offspring. In this study, we exposed adult zebrafish (F0) to AMI (0.8 µg/L) for 21 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water for 5 days. The mortality rate, average hatching time, and heart rate at 48 h post-fertilization (hpf) of F1 were investigated. Our results showed that parental exposure to AMI induced tachycardia and increased mortality in F1 zebrafish. Under a light/dark transition test, F1 larvae born from AMI-exposed parents exhibited lower locomotor activity in the dark period and decreased thigmotaxis in the light period. The transcriptome analysis showed that parental AMI exposure dysregulated some key pathways in their offspring. Through the prediction of key driver analysis, six differentially expressed genes (DEGs) were revealed as key driver genes involved in protein processing in endoplasmic reticulum (hspa5, hsp70.1, hsp90a), ribosome (rps27a) and PPAR signaling pathway (pparab and fabp2). Considering that the concentration of AMI residual components in natural water bodies may be over our test concentration (0.8 µg/L), our findings suggested that toxicity of parental exposure to the offspring of fish should receive greater attention.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Pez Cebra/fisiología , Amitriptilina/toxicidad , Amitriptilina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Larva , Perciformes/metabolismo , Expresión Génica , Agua/metabolismo , Mamíferos/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38056685

RESUMEN

Diazepam (DZP) residue has been frequently detected in wastewater, surface water, and groundwater due to its extensive use over the decades. In this study, we exposed female Japanese medaka (Oryzias latipes) to environmentally relevant doses of DZP (800 and 8000 ng/L) for 4 weeks, aimed to investigate their behavioral responses and possible links with ocular and brain oxidative stress homeostasis. As a result, DZP exposure could significantly reduce swimming activity (800 ng/L) and anxiety (800 and 8000 ng/L), indicating a sedative effect on medaka. The DZP exposure also significantly increased the social interaction in medaka at 8000 ng/L. Furthermore, exposure to DZP could alter the ocular and brain oxidative stress homeostasis in medaka. The ocular CAT activities significantly increased in the 800 ng/L-DZP groups, and the brain SOD, CAT, GST and MDA levels also significantly increased in both DZP exposure groups. Correlation analysis revealed that the ocular and brain oxidative stress induced by DZP exposure might play an important role in their behavioral toxicity to medaka. Our findings highlight the necessity to clarify the exact link between DZP exposure-induced oxidative stress in the neural and sensor systems and its behavioral toxicity to better assess the risks on nontarget aquatic species.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Diazepam/toxicidad , Estrés Oxidativo , Encéfalo , Natación , Contaminantes Químicos del Agua/toxicidad
12.
Aquat Toxicol ; 265: 106773, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000133

RESUMEN

Pollution by diazepam (DZP) is increasingly recognized as a major threat to aquatic organisms, but knowledge about its potential risk to fish is still limited. In this study, we exposed female and male Japanese medaka (Oryzias latipes) to environmentally relevant DZP (0.8 and 8 µg/L) for 28 days and investigated variation in their behavior (on days 7, 14, and 28) and brain neurotransmitter levels (on day 28). The results showed that DZP could be accumulated in the brain and gonads in Japanese medaka. When two fish of the same sex were placed in an aquarium, DZP exposure exhibited typical sedative effects on females (on day 7) and males (on days 7 and 14). However, these sedative effects on both sexes were no longer present after 28 days of exposure. Exposure to DZP induced sex-specific impacts on the social interactions of medaka on days 7, 14, and 28 of exposure in a time-dependent manner. When both sexes were placed into an aquarium in a ratio of 1:1, DZP could significantly alter their locomotor activity and social interaction on days 14 and 28 of the exposure. After 28 days of exposure, DZP significantly altered the levels of several neurotransmitters in the brain of medaka, also in sex-specific manners. The alterations in dopamine and serotonin levels exhibited significant correlations with the increased social interaction between females. At the same time, that of γ-aminobutyric acid significantly correlated to the decreased social interaction between males. Our findings suggest that chronic exposure to DZP, even at environmentally relevant concentrations, can accumulate in the brains and gonads of fish, and alter their behaviors by mediating brain neurotransmitter levels, which may further disturb their reproduction and population dynamics.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Diazepam/toxicidad , Interacción Social , Contaminantes Químicos del Agua/toxicidad , Reproducción , Encéfalo , Hipnóticos y Sedantes/farmacología , Neurotransmisores
13.
Ecotoxicol Environ Saf ; 268: 115707, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37988994

RESUMEN

Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.


Asunto(s)
Antioxidantes , Oxitetraciclina , Humanos , Microplásticos , Plásticos , Oxitetraciclina/toxicidad , Suelo , Plantas , Antibacterianos/toxicidad , Poliésteres
14.
Ecotoxicology ; 32(7): 948-957, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37735317

RESUMEN

Microplastics have been detected in a variety of aquatic ecosystems, and the combined effect of microplastics and chemical pollutants has become a matter of increasing concern. We conducted a 12-d co-exposure test of anthracene and spherical or fragmented polyethylene microplastics (size 200 µm) on Java medaka (Oryzias javanicus). The accumulation of anthracene in Java medaka muscle reached a plateau on day 5 in all anthracene exposure groups, and no significant differences were detected among the groups (ANT, 20.4 ± 5.5; ANT + SPPE-MP, 24.7 ± 2.7; ANT + FRPE-MP, 24.6 ± 4.7 µg/g). However, co-exposure to anthracene and spherical or fragmented polyethylene microplastics increased the duration of slow swimming in a swimming behavior test (control, 4.1 ± 1.4; ANT, 5.2 ± 2.8; ANT + SPPE-MP, 12.4 ± 3.7; ANT + FRPE-MP, 17.4 ± 5.1 min/30 min), and co-exposure to anthracene and fragmented polyethylene microplastics induced higher cytochrome P4501A monooxygenase (CYP1A) expression in Java medaka livers than the other anthracene exposure groups (ANT, 189 ± 74; ANT + SPPE-MP, 203 ± 75; ANT + FRPE-MP 272 ± 36% of control). Polyethylene microplastics appear to be weak vectors of anthracene at the size tested (200 µm), and the effect of shape (spherical or fragmented) on the vector effect was small. However, the presence of polyethylene microplastics could affect the swimming behavior and CYP1A expression in Java medaka.

15.
Antioxidants (Basel) ; 12(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37507885

RESUMEN

Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are typical metal-organic framework (MOF) materials and have been intensively studied for their potential application in drug delivery and environmental remediation. However, knowledge of their potential risks to health and the environment is still limited. Therefore, this study exposed female and male zebrafish to ZIF-8 NPs (0, 9.0, and 90 mg L-1) for four days. Subsequently, variations in their behavioral traits and brain oxidative stress levels were investigated. The behavioral assay showed that ZIF-8 NPs at 90 mg/L could significantly decrease the locomotor activity (i.e., hypoactivity) of both genders. After a ball falling stimulation, zebrafish exposed to ZIF-8 NPs (9.0 and 90 mg L-1) exhibited more freezing states (i.e., temporary cessations of movement), and males were more sensitive than females. Regardless of gender, ZIF-8 NPs exposure significantly reduced the SOD, CAT, and GST activities in the brain of zebrafish. Correlation analysis revealed that the brain oxidative stress induced by ZIF-8 NPs exposure might play an important role in their behavioral toxicity to zebrafish. These findings highlight the necessity for further assessment of the potential risks of MOF nanoparticles to aquatic species and the environment.

16.
Chemosphere ; 338: 139543, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37474033

RESUMEN

Pollution by microplastics in aquatic ecosystems is a worldwide problem, and the role of microplastics as vectors of pollutants has been a concern. Although small microplastics are thought to have a greater effect than large microplastics as vectors of pollutants, the impact of the size of microplastics on their ability to serve as vectors of pollutants has not been quantified. In this study, we conducted the 14-day experiment (7 days of exposure and 7 days of depuration) with polystyrene microplastics (2-µm or 10-µm diameter) and anthracene. On the last day of the exposure period, the concentration of anthracene in the muscle of Java medaka exposed to both anthracene and 2-µm polystyrene microplastics was the highest (47.4 ± 15.2 µg/g-muscle) of any group, followed by the group exposed to both anthracene and 10-µm polystyrene microplastics (23.0 ± 4.2 µg/g-muscle) and the group exposed to only anthracene (11.2 ± 2.2 µg/g-muscle). These results demonstrated that the size of microplastics was a critical determinant of their ability to serve as vectors of anthracene. The concentrations of anthracene and fine microplastics in the environment are sufficiently low that the effect of microplastics as vectors of anthracene may be observed only under experimental conditions that are unlikely to occur in the present environment. However, because pollution by plastics is expected to become more serious in the future, careful thought and proactive action will be needed to ensure that the impact of microplastics as vectors of pollutants does not become demonstrable under future environmental conditions.


Asunto(s)
Contaminantes Ambientales , Oryzias , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Poliestirenos/toxicidad , Poliestirenos/análisis , Plásticos , Oryzias/fisiología , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Antracenos/toxicidad
17.
Talanta ; 265: 124883, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393715

RESUMEN

It was urgent to improve the intuitive, portable, sensitive and multi-modal detection method for small molecules. In this study, a tri-modal readout of plasmonic colorimetric immunosensor (PCIS) for small molecule (zearalenone, ZEN, as an example) had been established based on the Poly-HRP amplification and gold nanostars (AuNS) etching. The immobilized Poly-HRP from the competitive immunoassay was used to catalyze iodide (I-) into iodine (I2), which could prevent the AuNS etching by I-. With the increasing of ZEN, the AuNS etching was enhanced, and the localized surface plasmon resonance (LSPR) peak of AuNS showed stronger blue shift, which resulted in the color changing from deep blue (no-etching) to blue violet (half-etching) and finally to shiny red (all-etching). The results of PCIS could be selectively obtained by the tri-modal readout: (1) naked eye (LOD of 0.10 ng/mL), (2) smartphone (LOD of 0.07 ng/mL) and (3) UV-spectrum (LOD of 0.04 ng/mL). The proposed PCIS had performed well in the sensitivity, specificity, accuracy and reliability. In addition, the harmless reagents were used in the overall process to further guarantee the environmental friendliness. Therefore, the PCIS might provide a novel and green avenue for the tri-modal readout of ZEN via the intuitive naked eye, portable smartphone and accurate UV-spectrum, which hold great potential for small molecule monitoring.

18.
Aquat Toxicol ; 260: 106589, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245408

RESUMEN

The potential toxicity of microplastics (MPs) and hydrophilic pharmaceuticals to aquatic organisms has recently raised great public concern, yet their combined effects on aquatic organisms remain largely unknown. Herein, the combined effects of MPs and the commonly prescribed amitriptyline hydrochloride (AMI) on the intestinal tissue and gut microbiota of zebrafish (Danio rerio) were investigated. Adult zebrafish were exposed to microplastics (polystyrene, PS, 440 µg/L), AMI (2.5 µg/L), PS+AMI (440 µg/L PS + 2.5 µg/L AMI), and dechlorinated tap water (control) for 21 days, respectively. Our results showed that zebrafish rapidly ingested PS beads and accumulated them in the gut. Exposure to PS+AMI significantly enhanced the SOD and CAT activities compared to the control group, suggesting that combined exposure might increase ROS production in the zebrafish gut. Exposure to PS+AMI led to severe gut injuries, including cilia defects, partial absence and cracking of intestinal villi. Exposure to PS+AMI caused shifts in the gut bacterial communities, increasing the abundance of Proteobacteria and Actinobacteriota, and decreasing the abundance of Firmicutes, Bacteroidota and beneficial bacteria Cetobacterium, which caused dysbiosis in the gut microbiota, and subsequently may induce intestinal inflammation. Furthermore, exposure to PS+AMI disordered the predicted metabolic functions of gut microbiota, but functional changes in the PS+AMI group at KEGG level 1 and level 2 were not significantly different from those in the PS group. The results of this study extend our knowledge of the combined effects of MPs and AMI on the health of aquatic organisms, and will be helpful in assessing the combined effects of MPs and tricyclic antidepressants on aquatic organisms.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/toxicidad , Pez Cebra/metabolismo , Amitriptilina/toxicidad , Disbiosis/inducido químicamente , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/toxicidad , Estrés Oxidativo , Bacterias/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-36442598

RESUMEN

Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17ß-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.


Asunto(s)
Bifenilos Polibrominados , Contaminantes Químicos del Agua , Animales , Humanos , Femenino , Masculino , Pez Cebra/genética , Éter , Transcriptoma , Éteres/análisis , Éteres de Etila , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/análisis , Bifenilos Polibrominados/química , Sistemas Neurosecretores , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
20.
Talanta ; 251: 123798, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970124

RESUMEN

It is desired and urgently needed to improve the sensitivity of immunochromatography assay (ICA) for hazardous chemicals. In this work, an enhanced ICA strip was established and evaluated for simultaneous, semi-quantitative and quantitative detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1). The signal strategy based on gold growth on the surface of the E. coli K12 carrier was recommended, which was successfully self-assembled on the enhanced ICA with a double test line pattern. When used as a novel carrier, the E. coli K12 could provide a larger surface area, better biocompatibility and high loading capacity, which was of great help to improve the performance of the ICA. By the naked eye, the semi-quantitative limit of detection (semi-Q-LOD) reached 0.03 ng/mL for both OTA and AFB1 (17-fold and 33-fold lower than the conventional ICA strip). By the digitized strip reader, the quantitative LODs (Q-LODs) were all identified as 0.01 ng/mL for two mycotoxins (10-fold improvement), with detection ranges of 0.01-0.5 ng/mL for OTA and 0.01-0.2 ng/mL for AFB1. Furthermore, the high reliability and applicability of the ICA were confirmed by its good correlation with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The advantages of the improved sensitivity, high efficiency and cost savings had been reflected for the ICA. This study could provide an important reference method for the sensitive, simultaneous, rapid and on-site monitoring of multicomponent contaminants.


Asunto(s)
Micotoxinas , Aflatoxina B1/análisis , Cromatografía de Afinidad/métodos , Cromatografía Liquida , Escherichia coli , Oro/química , Sustancias Peligrosas/análisis , Límite de Detección , Micotoxinas/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...