Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 532, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862892

RESUMEN

BACKGROUND: Mung bean (Vigna radiata L.) is an important warm-season grain legume. Adaptation to extreme environmental conditions, supported by evolution, makes mung bean a rich gene pool for stress tolerance traits. The exploration of resistance genes will provide important genetic resources and a theoretical basis for strengthening mung bean breeding. B-box (BBX) proteins play a major role in developmental processes and stress responses. However, the identification and analysis of the mung bean BBX gene family are still lacking. RESULTS: In this study, 23 VrBBX genes were identified through comprehensive bioinformatics analysis and named based on their physical locations on chromosomes. All the VrBBXs were divided into five groups based on their phylogenetic relationships, the number of B-box they contained and whether there was an additional CONSTANS, CO-like and TOC1 (CCT) domain. Homology and collinearity analysis indicated that the BBX genes in mung bean and other species had undergone a relatively conservative evolution. Gene duplication analysis showed that only chromosomal segmental duplication contributed to the expansion of VrBBX genes and that most of the duplicated gene pairs experienced purifying selection pressure during evolution. Gene structure and motif analysis revealed that VrBBX genes clustered in the same group shared similar structural characteristics. An analysis of cis-acting elements indicated that elements related to stress and hormone responses were prevalent in the promoters of most VrBBXs. The RNA-seq data analysis and qRT-PCR of nine VrBBX genes demonstrated that VrBBX genes may play a role in response to environmental stress. Moreover, VrBBX5, VrBBX10 and VrBBX12 are important candidate genes for plant stress response. CONCLUSIONS: In this study, we systematically analyzed the genomic characteristics and expression patterns of the BBX gene family under ABA, PEG and NaCl treatments. The results will help us better understand the complexity of the BBX gene family and provide valuable information for future functional characteristics of specific genes in this family.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas , Vigna , Vigna/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Duplicación de Gen , Estrés Fisiológico/genética
2.
Chin Med J (Engl) ; 137(2): 209-221, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390491

RESUMEN

BACKGROUND: Bladder cancer, characterized by a high potential of tumor recurrence, has high lifelong monitoring and treatment costs. To date, tumor cells with intrinsic softness have been identified to function as cancer stem cells in several cancer types. Nonetheless, the existence of soft tumor cells in bladder tumors remains elusive. Thus, our study aimed to develop a micro-barrier microfluidic chip to efficiently isolate deformable tumor cells from distinct types of bladder cancer cells. METHODS: The stiffness of bladder cancer cells was determined by atomic force microscopy (AFM). The modified microfluidic chip was utilized to separate soft cells, and the 3D Matrigel culture system was to maintain the softness of tumor cells. Expression patterns of integrin ß8 (ITGB8), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were determined by Western blotting. Double immunostaining was conducted to examine the interaction between F-actin and tripartite motif containing 59 (TRIM59). The stem-cell-like characteristics of soft cells were explored by colony formation assay and in vivo studies upon xenografted tumor models. RESULTS: Using our newly designed microfluidic approach, we identified a small fraction of soft tumor cells in bladder cancer cells. More importantly, the existence of soft tumor cells was confirmed in clinical human bladder cancer specimens, in which the number of soft tumor cells was associated with tumor relapse. Furthermore, we demonstrated that the biomechanical stimuli arising from 3D Matrigel activated the F-actin/ITGB8/TRIM59/AKT/mTOR/glycolysis pathways to enhance the softness and tumorigenic capacity of tumor cells. Simultaneously, we detected a remarkable up-regulation in ITGB8, TRIM59, and phospho-AKT in clinical bladder recurrent tumors compared with their non-recurrent counterparts. CONCLUSIONS: The ITGB8/TRIM59/AKT/mTOR/glycolysis axis plays a crucial role in modulating tumor softness and stemness. Meanwhile, the soft tumor cells become more sensitive to chemotherapy after stiffening, that offers new insights for hampering tumor progression and recurrence.


Asunto(s)
Cadenas beta de Integrinas , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Actinas/metabolismo , Recurrencia Local de Neoplasia , Serina-Treonina Quinasas TOR/metabolismo , Glucólisis , Línea Celular Tumoral , Proliferación Celular , Mamíferos/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Front Cell Dev Biol ; 11: 1224827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842093

RESUMEN

Some cancer cells migration and metastasis are characterized by the outgrowth of lamellipodia protrusions in which the underlying mechanism remains unclear. Evidence has confirmed that lamellipodia formation could be regulated by various adhesion molecules, such as CD44, and we previously reported that lamellipodia at the leading edge of luminal type breast cancer (BrCa) were enriched with high expression of CD44. In this study, we found that the overexpression of CD44s could promote lamellipodia formation in BrCa cells through inducing tissue type plasminogen activator (tPA) upregulation, which was achieved by PI3K/Akt signaling pathway activation. Moreover, we revealed that tPA could interact with LDL receptor related protein 1 (LRP1) to activate the downstream NFκB signaling pathway, which in turn facilitate lamellipodia formation. Notably, inhibition of the tPA/LRP1-NFkB signaling cascade could attenuate the CD44s-induced lamellipodia formation. Thus, our findings uncover a novel role of CD44s in driving lamellipodia outgrowth through tPA/LRP1-NFkB axis in luminal BrCa cells that may be helpful for seeking potential therapeutic targets.

4.
J Biol Chem ; 298(11): 102588, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243113

RESUMEN

Cell adhesion molecule CD44v8-10 is associated with tumor ste0mness and malignancy; however, whether CD44v10 alone confers these properties is unknown. Here, we demonstrated that CD44v10 promotes stemness and chemoresistance of triple-negative breast cancers (TNBCs) individually. Next, we identified that genes differentially expressed in response to ectopic expression of CD44v10 are mostly related to glycolysis. Further, we showed that CD44v10 upregulates glucose transporter 1 to facilitate glycolysis by activating the MAPK/ERK and PI3K/AKT signaling pathways. This glycolytic reprogramming induced by CD44v10 contributes to the stem-like properties of TNBC cells and confers resistance to paclitaxel treatment. Notably, we determined that the knockdown of glucose transporter 1 could attenuate the enhanced effects of CD44v10 on glycolysis, stemness, and paclitaxel resistance. Collectively, our findings provide novel insights into the function of CD44v10 in TNBCs and suggest that targeting CD44v10 may contribute to future clinical therapy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Paclitaxel/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Stem Cell Res Ther ; 13(1): 218, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619172

RESUMEN

BACKGROUND: Human pluripotent stem cells (hPSCs) have great potential in applications for regenerative medicine and drug development. However, 3D suspension culture systems for clinical-grade hPSC large-scale production have been a major challenge. Accumulating evidence has demonstrated that the addition of dextran sulfate (DS) could prevent excessive adhesion of hPSCs from forming larger aggregates in 3D suspension culture. However, the signaling and molecular mechanisms underlying this phenomenon remain elusive. METHODS: By using a cell aggregate culture assay and separating big and small aggregates in suspension culture systems, the potential mechanism and downstream target genes of DS were investigated by mRNA sequence analysis, qRT-PCR validation, colony formation assay, and interference assay. RESULTS: Since cellular adhesion molecules (CAMs) play important roles in hPSC adhesion and aggregation, we assumed that DS might prevent excess adhesion through affecting the expression of CAMs in hPSCs. As expected, after DS treatment, we found that the expression of CAMs was significantly down-regulated, especially E-cadherin (E-cad) and intercellular adhesion molecule 1 (ICAM1), two highly expressed CAMs in hPSCs. The role of E-cad in the adhesion of hPSCs has been widely investigated, but the function of ICAM1 in hPSCs is hardly understood. In the present study, we demonstrated that ICAM1 exhibited the capacity to promote the adhesion in hPSCs, and this adhesion was suppressed by the treatment with DS. Furthermore, transcriptomic analysis of RNA-seq revealed that DS treatment up-regulated genes related to Wnt signaling resulting in the activation of Wnt signaling in which SLUG, TWIST, and MMP3/7 were highly expressed, and further inhibited the expression of E-cad. CONCLUSION: Our results demonstrated that DS played an important role in controlling the size of hPSC aggregates in 3D suspension culture by inhibiting the expression of ICAM1 coupled with the down-regulation of E-cad through the activation of the Wnt signaling pathway. These results represent a significant step toward developing the expansion of hPSCs under 3D suspension condition in large-scale cultures.


Asunto(s)
Células Madre Pluripotentes , Vía de Señalización Wnt , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Sulfato de Dextran , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Células Madre Pluripotentes/metabolismo
6.
J Nanobiotechnology ; 19(1): 437, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930304

RESUMEN

BACKGROUND: Exosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. RESULTS: In vitro, PKH26 labeled-hESC-Exosomes were shown to be internalized and integrated into TGFß-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labeled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFßRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFßRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFßRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. CONCLUSIONS: Our results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFßRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR-6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.


Asunto(s)
Exosomas/metabolismo , Cirrosis Hepática/terapia , MicroARNs/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteínas Smad/metabolismo , Animales , Antagomirs/metabolismo , Técnicas de Cultivo Tridimensional de Células , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Exosomas/química , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología
7.
Cell Prolif ; 54(9): e13112, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34390064

RESUMEN

OBJECTIVES: For clinical applications of cell-based therapies, a large quantity of human pluripotent stem cells (hPSCs) produced in standardized and scalable culture processes is required. Currently, microcarrier-free suspension culture shows potential for large-scale expansion of hPSCs; however, hPSCs tend to aggregate during culturing leading to a negative effect on cell yield. To overcome this problem, we developed a novel protocol to effectively control the sizes of cell aggregates and enhance the cell proliferation during the expansion of hPSCs in suspension. MATERIALS AND METHODS: hPSCs were expanded in suspension culture supplemented with polyvinyl alcohol (PVA) and dextran sulphate (DS), and 3D suspension culture of hPSCs formed cell aggregates under static or dynamic conditions. The sizes of cell aggregates and the cell proliferation as well as the pluripotency of hPSCs after expansion were assessed using cell counting, size analysis, real-time quantitative polymerase chain reaction, flow cytometry analysis, immunofluorescence staining, embryoid body formation, teratoma formation and transcriptome sequencing. RESULTS: Our results demonstrated that the addition of DS alone effectively prevented hPSC aggregation, while the addition of PVA significantly enhanced hPSC proliferation. The combination of PVA and DS not only promoted cell proliferation of hPSCs but also produced uniform and size-controlled cell aggregates. Moreover, hPSCs treated with PVA, or DS or a combination, maintained the pluripotency and were capable of differentiating into all three germ layers. mRNA-seq analysis demonstrated that the combination of PVA and DS significantly promoted hPSC proliferation and prevented cell aggregation through improving energy metabolism-related processes, regulating cell growth, cell proliferation and cell division, as well as reducing the adhesion among hPSC aggregates by affecting expression of genes related to cell adhesion. CONCLUSIONS: Our results represent a significant step towards developing a simple and robust approach for the expansion of hPSCs in large scale.


Asunto(s)
Agregación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sulfato de Dextran/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Alcohol Polivinílico/farmacología , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ratones
8.
Biomater Sci ; 9(18): 6064-6085, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34136892

RESUMEN

Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-ß in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Células Endoteliales , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Neovascularización Patológica/tratamiento farmacológico , Pericitos
9.
J Med Chem ; 64(9): 5404-5428, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33844533

RESUMEN

The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 µM).


Asunto(s)
Compuestos de Bifenilo/química , Inhibidores Enzimáticos/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirazoles/química , Piridinas/química , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Dihidroorotato Deshidrogenasa , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Semivida , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirazoles/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Piridinas/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
10.
Cell Tissue Res ; 383(3): 1077-1092, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33245415

RESUMEN

Bile salt-dependent lipase (BSDL) within intestinal lumen can be endocytosed by enterocytes and support the intestinal barrier function. However, the epithelial-supporting effect of this protein has not been verified in a human cell line and neither the direct signaling pathway nor the function of endocytosis in this process has been clearly identified. We sought to investigate the signaling pathway and the membrane receptor through which BSDL might exert these effects using intestinal epithelial cells. Caco-2 cells were treated with recombinant BSDL, and the barrier function, cell proliferation, and activation of the Wnt signaling pathway were assessed. The effect of Wnt signaling activation induced by BSDL and BSDL endocytosis was investigated in LRP6-silenced and non-silenced cells. Moreover, caveolae- and clathrin-dependent endocytosis inhibitors were also applied respectively to analyze their effects on Wnt signaling activation induced by BSDL. BSDL treatment increased the barrier function but not proliferation of Caco-2 cells. It also induced ß-catenin nuclear translocation and activated Wnt target gene transcription. Moreover, in the Wnt pathway, BSDL increased the levels of non-phosphorylated-ß-catenin (Ser33/37/Thr41) and phosphorylated-ß-catenin (Ser552). Notably, the silencing of LRP6 expression impaired BSDL endocytosis and decreased BSDL-induced ß-catenin nuclear translocation. The inhibition of BSDL endocytosis induced by caveolae-mediated endocytosis inhibitor was stronger than that by clathrin-mediated endocytosis inhibitor, and the Wnt signaling activation associated with its endocytosis was also most likely caveolae-dependent. Our findings suggested that LRP6, a canonical Wnt pathway co-receptor, can mediate BSDL endocytosis and then activate Wnt signaling in Caco-2 cells.


Asunto(s)
Lipasa/fisiología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Células CACO-2 , Endocitosis , Humanos , Transporte de Proteínas
11.
Front Cell Dev Biol ; 9: 711149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977001

RESUMEN

Integrin ß1 (ITGB1), which acts as an extracellular matrix (ECM) receptor, has gained increasing attention as a therapeutic target for the treatment of hepatocellular carcinoma (HCC). However, the underpinning mechanism of how ITGB1 drives HCC progression remains elusive. In this study, we first found that ITGB1 expression was significantly higher in HCC tissues than in normal controls by bioinformatics analysis. Furthermore, bioinformatics analysis revealed that paxillin (PXN) and 14-3-3 protein zeta (YWHAZ) are the molecules participating in ITGB1-regulated HCC tumor cell cycle progression. Indeed, immunohistochemistry (IHC) revealed that ITGB1, paxillin, and YWHAZ were strongly upregulated in paired HCC tissue compared with adjacent normal tissues. Notably, the inhibition of ITGB1 expression by small interfering RNA (siRNA) resulted in the downregulated expression of PXN and YWHAZ in primary HCC cells, as assessed by western blot and immunostaining. In addition, ITGB1 knockdown markedly impaired the aggressive behavior of HCC tumor cells and delayed cell cycle progression as determined by cell migration assay, drug-resistance analysis, colony formation assay, quantitative real-time polymerase chain reaction (qRT-PCR), and cell cycle analysis as well as cell viability measurements. More importantly, we proved that xenograft ITGB1high tumors grew more rapidly than ITGB1low tumors. Altogether, our study showed that the ITGB1/PXN/YWHAZ/protein kinase B (AKT) axis enhances HCC progression by accelerating the cell cycle process, which offers a promising approach to halt HCC tumor growth.

12.
Mol Cancer Ther ; 19(12): 2476-2489, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33082275

RESUMEN

Antiretrovirals belonging to the human immunodeficiency virus (HIV) protease inhibitor (HIV-PI) class exert inhibitory effects across several cancer types by targeting tumor cells and its microenvironment. Cervical carcinoma represents a leading cause of morbidity and mortality, particularly in women doubly infected with high-risk human papillomaviruses (HR-HPV) and HIV; of note, combined antiretroviral therapy has reduced cervical carcinoma onset and progression in HIV-infected women. We evaluated the effectiveness and mechanism(s) of action of HIV-PI against cervical carcinoma using a transgenic model of HR-HPV-induced estrogen-promoted cervical carcinoma (HPV16/E2) and found that treatment of mice with ritonavir-boosted HIV-PI, including indinavir, saquinavir, and lopinavir, blocked the growth and promoted the regression of murine cervical carcinoma. This was associated with inhibition of tumor angiogenesis, coupled to downregulation of matrix metalloproteinase (MMP)-9, reduction of VEGF/VEGFR2 complex, and concomitant upregulation of tissue inhibitor of metalloproteinase-3 (TIMP-3). HIV-PI also promoted deposition of collagen IV at the epithelial and vascular basement membrane and normalization of both vessel architecture and functionality. In agreement with this, HIV-PI reduced tumor hypoxia and enhanced the delivery and antitumor activity of conventional chemotherapy. Remarkably, TIMP-3 expression gradually decreased during progression of human dysplastic lesions into cervical carcinoma. This study identified the MMP-9/VEGF proangiogenic axis and its modulation by TIMP-3 as novel HIV-PI targets for the blockade of cervical intraepithelial neoplasia/cervical carcinoma development and invasiveness and the normalization of tumor vessel functions. These findings may lead to new therapeutic indications of HIV-PI to treat cervical carcinoma and other tumors in either HIV-infected or uninfected patients.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidor Tisular de Metaloproteinasa-3/agonistas , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Papillomavirus Humano 16 , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/etiología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Biomaterials ; 256: 120217, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32736172

RESUMEN

The high potential for cancer relapse has emerged as a crucial challenge of human bladder cancer treatment. To date, those stem-like bladder cancer cells (BCSCs) have been considered as seeds that induce frequent tumor recurrence. However, the cell origin of cancer stem cells (CSCs) is still a controversial issue, due in part to the findings that CSCs not only origin from normal stem cells but also converted from differentiated tumor cells. Here, we describe a biomaterial 3D collagen I gel culture system, where non-tumorigenic cells can obtain tumorigenic potential and revert back into CSCs through the integrin α2ß1/PI3K/AKT/NF-κB cascade, resulting in the tumorigenesis in bladder tissues. Furthermore, inhibiting this integrin α2ß1/PI3K/AKT/NF-κB signal pathways can significantly impair the tumorigenic capacity of CSCs. Simultaneously, in vivo studies demonstrate that IFN-γ secreted by T cells can trigger those CSCs into dormancy through the IDO/Kyn/AHR/P27 cascade, which elicit chemotherapy resistance and cancer relapse. To address the challenges of suppressing bladder tumor growth and preventing tumor reoccurrence, we use IDO and integrin α2ß1 signal pathway inhibitors combine with chemotherapeutic agents to awaken dormant bladder CSCs and inhibit their tumorigenic ability as well as effectively eliminate CSCs. The therapeutic approaches we propose provide new insights for eradicating tumors and reducing bladder cancer relapse after therapy.


Asunto(s)
Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Materiales Biocompatibles , Carcinogénesis , Línea Celular Tumoral , Colágeno , Humanos , Recurrencia Local de Neoplasia , Células Madre Neoplásicas , Fosfatidilinositol 3-Quinasas
14.
Artículo en Inglés | MEDLINE | ID: mdl-32061751

RESUMEN

Carboxyl ester lipase (Cel), is a lipolytic enzyme secreted by the pancreas, which hydrolyzes various species of lipids in the gut. Cel is also secreted by mammary gland during lactation and exists in breast milk. It facilitates dietary fat digestion and absorption, thus contributing to normal infant development. This study aimed to examine whether the Cel in zebrafish embryos has a similar role of maternal lipid utilization as in human infants, and how Cel contributes to the utilization of yolk lipids in zebrafish. The cel1 and cel2 genes were expressed ubiquitously in the blastodisc and yolk syncytial layer before 24 hpf, and in the exocrine pancreas after 72 hpf. The cel1 and cel2 morphants exhibited developmental retardation and yolk sac retention. The total cholesterol, cholesterol ester, free cholesterol, and triglyceride were reduced in the morphants' body while accumulated in the yolk (except triglyceride). The FFA content of whole embryos was much lower in morphants than in standard controls. Moreover, the delayed development in cel (cel1/cel2) double morphants was partially rescued by FFA and cholesterol supplementation. Delayed and weakened cholesterol ester transport to the brain and eyes was observed in cel morphants. Correspondingly, shrunken midbrain tectum, microphthalmia, pigmentation-delayed eyes as well as down-regulated Shh target genes were observed in the CNS of double morphants. Interestingly, cholesterol injections reversed these CNS alterations. Our findings suggested that cel genes participate in the lipid releasing from yolk sac to developing body, thereby contributing to the normal growth rate and CNS development in zebrafish.


Asunto(s)
Carboxilesterasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Trastornos del Crecimiento/genética , Saco Vitelino/enzimología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Carboxilesterasa/genética , Sistema Nervioso Central/embriología , Colesterol/metabolismo , Ésteres del Colesterol/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero , Desarrollo Embrionario , Técnicas de Silenciamiento del Gen , Trastornos del Crecimiento/embriología , Trastornos del Crecimiento/enzimología , Proteínas Hedgehog/metabolismo , Humanos , Metabolismo de los Lípidos , Morfolinos/administración & dosificación , Morfolinos/genética , Páncreas Exocrino/embriología , Páncreas Exocrino/enzimología , Triglicéridos/metabolismo , Saco Vitelino/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Biochem Pharmacol ; 172: 113741, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812679

RESUMEN

Na+/K+-ATPase α1 was reported to directly interact with and recruit FGF2 (fibroblast growth factor 2), a vital cell signaling protein implicated in angiogenesis, to the inner plasma membrane for subsequent secretion. Cardenolides, a class of cardiac glycosides, were reported to downregulate FGF2 secretion upon binding to Na+/K+-ATPase α1 in a cell system with ectopically expressed FGF2 and Na+/K+-ATPase α1. Herein, we disclose that the cardenolides ouabain and reevesioside A significantly enhance the secretion/release of FGF2 and the phosphorylation of FGFR1 (fibroblast growth factor receptor 1) in a time- and dose-dependent manner, in A549 carcinoma cells. A pharmacological approach was used to elucidate the pertinent upstream effectors. Only the ERK1/2 inhibitor U0126 but not the other inhibitors examined (including those inhibiting the unconventional secretion of FGF2) was able to reduce ouabain-induced FGF2 secretion and FGFR1 activation. ERK1/2 phosphorylation was increased upon ouabain treatment, a process found to be mediated through upstream effectors including ouabain-induced phosphorylated EGFR and a reduced MKP1 protein level. Therefore, at least two independent lines of upstream effectors are able to mediate ouabain-induced ERK1/2 phosphorylation and the subsequent FGF2 secretion and FGFR1 activation. These finding constitute unprecedent insights into the regulation of FGF2 secretion by cardenolides.


Asunto(s)
Cardenólidos/farmacología , Factor 2 de Crecimiento de Fibroblastos/agonistas , Ouabaína/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Células A549 , Cardenólidos/química , Supervivencia Celular/efectos de los fármacos , Interacciones Farmacológicas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Estructura Molecular , Ouabaína/química , Pirroles/administración & dosificación , Pirroles/farmacología
17.
Sci Transl Med ; 10(442)2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29794061

RESUMEN

Vascular normalizing strategies, aimed at ameliorating blood vessel perfusion and lessening tissue hypoxia, are treatments that may improve the outcome of cancer patients. Secreted class 3 semaphorins (SEMA3), which are thought to directly bind neuropilin (NRP) co-receptors that, in turn, associate with and elicit plexin (PLXN) receptor signaling, are effective normalizing agents of the cancer vasculature. Yet, SEMA3A was also reported to trigger adverse side effects via NRP1. We rationally designed and generated a safe, parenterally deliverable, and NRP1-independent SEMA3A point mutant isoform that, unlike its wild-type counterpart, binds PLXNA4 with nanomolar affinity and has much greater biochemical and biological activities in cultured endothelial cells. In vivo, when parenterally administered in mouse models of pancreatic cancer, the NRP1-independent SEMA3A point mutant successfully normalized the vasculature, inhibited tumor growth, curbed metastatic dissemination, and effectively improved the supply and anticancer activity of chemotherapy. Mutant SEMA3A also inhibited retinal neovascularization in a mouse model of age-related macular degeneration. In summary, mutant SEMA3A is a vascular normalizing agent that can be exploited to treat cancer and, potentially, other diseases characterized by pathological angiogenesis.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Proteínas Mutantes/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/agonistas , Animales , Antineoplásicos/uso terapéutico , Permeabilidad Capilar/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/patología , Simulación por Computador , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Ratones Transgénicos , Proteínas Mutantes/química , Neoplasias/irrigación sanguínea , Neoplasias/patología , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/efectos de los fármacos , Semaforina-3A/química
18.
Oncotarget ; 6(4): 2148-63, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25669982

RESUMEN

Tylophorine compounds have been the focus of drug development for decades. Tylophorine derivatives exhibit anti-cancer activities but their cellular targets remain unknown. We used a biotinylated tylophorine derivative to probe for the interacting cellular target(s) of tylophorine. Tylophorine directly binds to caprin-1 and consequently enhances the recruitment of G3BP1, c-Myc mRNA, and cyclin D2 mRNA to form a ribonucleoprotein complex. Subsequently, this tylophorine targeted ribonucleoprotein complex is sequestered to the polysomal fractions and the protein expressions of the associated mRNA-transcripts are repressed. Caprin-1 depleted carcinoma cells become more resistant to tylophorine, associated with decreased formation of the ribonucleoprotein complex targeted by tylophorine. Consequently, tylophorine downregulates c-Myc and cyclins D1/D2, causing hypophosphorylation of Rb and suppression of both processing-body formation and the Warburg effect. Gene expression profiling and gain-of-c-Myc-function experiments also revealed that the downregulated c-Myc contributes to the anti-oncogenic effects of tylophorine compounds. Furthermore, the potent tylophorine derivative dibenzoquinoline-33b elicited a similar effect, as c-Myc protein levels were also decreased in xenograft tumors treated with dibenzoquinoline-33b. Thus, tylophorine compounds exert anti-cancer activity predominantly by targeting and sequestering the caprin-1 protein and c-Myc mRNA associated ribonucleoprotein complex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacología , Animales , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Ciclina D2/genética , Ciclina D2/metabolismo , ADN Helicasas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Indolizinas/química , Indolizinas/metabolismo , Indolizinas/farmacología , Células MCF-7 , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fenantrenos/química , Fenantrenos/metabolismo , Fenantrenos/farmacología , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Proto-Oncogénicas c-myb/genética , ARN Helicasas , Interferencia de ARN , Proteínas con Motivos de Reconocimiento de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 5(15): 6087-101, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25026281

RESUMEN

Glutaminase, which converts glutamine to glutamate, is involved in Warburg effect in cancer cells. Two human glutaminase genes have been identified, GLS (GLS1) and GLS2. Two alternative transcripts arise from each glutaminase gene: first, the kidney isoform (KGA) and glutaminase C (GAC) for GLS; and, second, the liver isoform (LGA) and glutaminase B (GAB) for GLS2. While GLS1 is considered as a cancer therapeutic target, the potential role of GLS2 in cancer remains unclear. Here, we discovered a series of alkyl benzoquinones that preferentially inhibit glutaminase B isoform (GAB, GLS2) rather than the kidney isoform of glutaminase (KGA, GLS1). We identified amino acid residues in an allosteric binding pocket responsible for the selectivity. Treatment with the alkyl benzoquinones decreased intracellular glutaminase activity and glutamate levels. GLS2 inhibition by either alkyl benzoquinones or GLS2 siRNA reduced carcinoma cell proliferation and anchorage-independent colony formation, and induced autophagy via AMPK mediated mTORC1 inhibition. Our findings demonstrate amino acid sequences for selective inhibition of glutaminase isozymes and validate GLS2 as a potential anti-cancer target.


Asunto(s)
Glutaminasa/antagonistas & inhibidores , Complejos Multiproteicos/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Autofagia , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glutaminasa/metabolismo , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , Terapia Molecular Dirigida , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
J Med Chem ; 55(23): 10363-77, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23167614

RESUMEN

A series of novel tylophorine-derived dibenzoquinolines has been synthesized and their biological activity evaluated. Three assays were conducted: inhibition of cancer cell proliferation, inhibition of TGEV replication for anticoronavirus activity, and suppression of nitric oxide production in RAW264.7 cells (a measure of anti-inflammation). The most potent compound from these assays, dibenzoquinoline 33b, showed improved solubility compared to tylophorine 9a, in vivo efficacies in a lung A549 xenografted tumor mouse model and a murine paw edema model, good bioavailability, and no significant neurotoxicity (as tested by a rota-rod test for motor coordination). This is the first study to explore in detail the role of the tylophorine E ring on biological activity and very strongly suggests that tylophorine-derived dibenzoquinolines merit further development into orally active agents.


Asunto(s)
Alcaloides/farmacología , Indolizinas/farmacología , Fenantrenos/farmacología , Administración Oral , Alcaloides/administración & dosificación , Alcaloides/química , Alcaloides/farmacocinética , Animales , Disponibilidad Biológica , Línea Celular , Línea Celular Tumoral , Coronavirus/efectos de los fármacos , Coronavirus/fisiología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indolizinas/administración & dosificación , Indolizinas/química , Indolizinas/farmacocinética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Fenantrenos/administración & dosificación , Fenantrenos/química , Fenantrenos/farmacocinética , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...