Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37888170

RESUMEN

The development of multifunctional materials has been expected in dentistry. This study investigated the effects of a novel universal bond containing a bioactive monomer, calcium 4-methacryloxyethyl trimellitic acid (CMET), on odontoblast differentiation in vitro. Eluates from bioactive universal bond with CMET (BA (+), BA bond), bioactive universal bond without CMET (BA (-)), and Scotchbond Universal Plus adhesive (SC, 3M ESPE, USA) were added to the culture medium of the rat odontoblast-like cell line MDPC-23. Then, cell proliferation, differentiation, and mineralization were examined. Statistical analyses were performed using a one-way ANOVA and Tukey's HSDtest. The cell counting kit-8 assay and alkaline phosphatase (ALP) assay showed that cell proliferation and ALP were significantly higher in the 0.5% BA (+) group than in the other groups. In a real-time reverse-transcription polymerase chain reaction, mRNA expression of the odontogenic markers, dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1), was significantly higher in the 0.5% BA (+) group than in the BA (-) and SC groups. Calcific nodule formation in MDPC-23 cells was accelerated in the BA (+) group in a dose-dependent manner (p < 0.01); however, no such effect was observed in the BA (-) and SC groups. Thus, the BA bond shows excellent potential for dentin regeneration.

2.
Biomedicines ; 10(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359301

RESUMEN

The purposes of this study were to investigate the in vitro effects of arginine-glycine-aspertic acid (RGD) peptides derived from human dentin phosphophoryn (DPP) on human dental pulp stem cell-proliferation, differentiation and mineralization, and to explore the mechanism of the peptides' function. The 1 M concentration of soluble DPP-derived RGD peptides, RGD-1, RGD-2 and RGD-3 were coated onto non-tissue-culture polystyrene plates, and human dental pulp stem cells (hDPSCs) were cultured on them to examine the effects of the peptides on hDPSCs. In addition, 1 M arginine-alanine-aspertic acid (RAD) peptides were used as the control. Cell proliferation of hDPSCs was promoted by all three RGD peptides. All three RGD peptides had significantly higher alkaline phosphatase (ALP) activity compared to the control. RGD-3 induced the highest ALP activity compared to the control. RGD-3 also significantly promoted the mRNA expression of the following genes: 1.69-fold in dentine matrix protein-1 (DMP-1), 1.99-fold in dentine sialophosphoprotein (DSPP), 1.51-fold in ALP, and 2.31-fold in bone sialoprotein (BSP), as compared to the control group. Mineralization of hDPSCs was accelerated by all three RGD peptides, RGD-3 in particular. The MAPK p38 inhibitor SB202190 inhibited the effect of RGD-3 to a level comparable to the control, observed in both ALP activity assay and Arizarin red S (ARS) staining. It suggests that the p38 pathway may be responsible for eliciting the differentiation and mineralization effects of DPP-derived RGD peptides in the hDPSCs. The mRNA expression levels of the integrins ITGA1-5, ITGA7, ITGB1 and ITGB3 were significantly upregulated. Among them, expression of ITGA5 was promoted 1.9-fold, ITGA7 1.58-fold, ITGB1 1.75-fold and ITGB3 1.9-fold compared to the control. It suggests the possible involvement of these integrin channels in different subunit combinations facilitating signal transduction for differentiation of hDPSCs into odontoblasts. As conclusions, human DPP-derived RGD peptides RGD-1, RGD-2 and RGD-3 promoted the proliferation, differentiation and mineralization of hDPSCs in vitro. Among the three peptides, RGD-3 had the most significant effects. It is also suggested that RGD-3 binds to integrin receptors on the surface of hDPSCs and regulates the odontogenic gene expression and differentiation via activation of p38 of MAPK pathway. DPP-derived RGD-3 may be a promising choice in the formulation of a novel material for vital pulp therapy to induce dental pulp stem cells into odontoblasts and form reparative dentin on the exposed pulp tissue.

3.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884533

RESUMEN

This study aimed to evaluate the in vitro effect of the novel bioactive adhesive monomer CMET, a calcium salt of 4-methacryloxyethyl trimellitate acid (4-MET), on human dental pulp stem cells (hDPSCs) and its capacity to induce tertiary dentin formation in a rat pulp injury model. Aqueous solutions of four tested materials [4-MET, CMET, Ca(OH)2, and mineral trioxide aggregate (MTA)] were added to the culture medium upon confluence, and solvent (dH2O) was used as a control. Cell proliferation was assessed using the Cell Counting Kit-8 assay, and cell differentiation was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. The mineralization-inducing capacity was evaluated using alizarin red S staining and an alkaline phosphatase activity assay. For an in vivo experiment, a mechanical pulp exposure model was prepared on Wistar rats; damaged pulp was capped with Ca(OH)2 or CMET. Cavities were sealed with composite resin, and specimens were assessed after 14 and 28 days. The in vitro results showed that CMET exhibited the lowest cytotoxicity and highest odontogenic differentiation capacity among all tested materials. The favorable outcome on cell mineralization after treatment with CMET involved p38 and c-Jun N-terminal kinases signaling. The nuclear factor kappa B pathway was involved in the CMET-induced mRNA expression of odontogenic markers. Similar to Ca(OH)2, CMET produced a continuous hard tissue bridge at the pulp exposure site, but treatment with only CMET produced a regular dentinal tubule pattern. The findings suggest that (1) the evaluated novel bioactive adhesive monomer provides favorable biocompatibility and odontogenic induction capacity and that (2) CMET might be a very promising adjunctive for pulp-capping materials.


Asunto(s)
Pulpa Dental/citología , Dentina/citología , Metacrilatos/farmacología , Odontoblastos/citología , Odontogénesis , Regeneración , Células Madre/citología , Ácidos Tricarboxílicos/farmacología , Adhesivos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Dentina/efectos de los fármacos , Dentina/metabolismo , Masculino , Odontoblastos/efectos de los fármacos , Odontoblastos/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/metabolismo
4.
Materials (Basel) ; 14(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673176

RESUMEN

The purpose of the present study was to investigate the effect of a peptide (i.e., SESDNNSSSRGDASYNSDES) derived from dentin phosphophoryn (DPP) with arginine-glycine-aspartic acid (RGD) motifs on odontoblast differentiation in vitro and to compare it with calcium hydroxide-a material used conventionally for vital pulp therapy-in terms of reparative dentin formation and pulp inflammation in vivo. Alkaline phosphatase activity assay and alizarin red S staining were performed to evaluate odontoblast-differentiation in cell culturing experiments. To observe the reparative dentin formation and pulp inflammation animal experiment was performed and examined by histological methods. The difference between the experimental group and the control group was analyzed statistically using a one-way ANOVA test. The results revealed that the DPP-derived RGD-containing peptide triggered odontoblast differentiation and mineralization in vitro. In rats undergoing direct pulp capping, the DPP-derived RGD-containing peptide was found to induce intensively formed reparative dentin with high compactness at week 4. On histological and morphometrical examinations, a smaller degree of pulpitis was observed in the specimens treated with the peptide than in those treated with calcium hydroxide. This study suggests that the DPP-derived RGD-containing peptide is a biocompatible, biodegradable and bioactive material for dentin regeneration.

5.
Arch Oral Biol ; 94: 54-61, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30168419

RESUMEN

OBJECTIVE: To investigate the in vitro effects of CCN2 on odontoblast-like cells proliferation and differentiation. DESIGN: MDPC-23 cells were cultured in DMEM supplemented with 5% FBS. CCN2 was either added to culture media or coated onto culture polystyrene, addition or coating of dH2O was served as control. In the addition group, CCN2 (100 ng/mL) was added into culture media. In the coating group, CCN2 at the concentration of 1000 ng/mL was employed. Cell proliferation was performed using CCK-8 assay. Cell differentiation and mineralization were analyzed by ALPase activity assay, real time RT-PCR and alizarin red staining. One-way ANOVA with post-hoc tukey HSD test was used for statistical analysis. RESULTS: MDPC-23 cells exhibited robust proliferative activity upon exposure to either soluble or immobilized CCN2. ALP activity of cells cultured on CCN2-modified surface was continuously strengthened from day six (0.831 ±â€¯0.024 units/µg protein versus 0.563 ±â€¯0.006 units/µg protein of control) till day eight (1.035 ±â€¯0.139 units/µg protein versus 0.704 ±â€¯0.061 units/µg protein of control). Gene expression of BSP, OCN and OPN were promoted by soluble CCN2 after 48 h exposure. Moreover, gene expression of BSP, OCN, OPN, ALP, COL1 A1, Runx-2, DSPP and DMP-1 was significantly enhanced by immobilized CCN2. Finally, mineralization of MDPC-23 cells was accelerated by both soluble and immobilized CCN2 to different extent. CONCLUSIONS: The findings indicate that CCN2 promoted proliferation, odontogenic gene expression and mineralization of MDPC-23 cells. It is proposed that CCN2 may be a promising adjunctive formula for dentin regeneration.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Odontoblastos/efectos de los fármacos , Actinas/genética , Actinas/metabolismo , Fosfatasa Alcalina/análisis , Análisis de Varianza , Regeneración Ósea/efectos de los fármacos , Calcificación Fisiológica , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/administración & dosificación , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Medios de Cultivo , Citoesqueleto/efectos de los fármacos , Dentina , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Odontoblastos/citología , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA