Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202403345, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581110

RESUMEN

Porous materials that could recognize specific molecules from complex mixtures are of great potential in improving the current energy-intensive multistep separation processes. However, due to the highly similar structures and properties of the mixtures, the design of desired porous materials remains challenging. Herein, a sulfonate-functionalized metal-organic framework ZU-609 with suitable pore size and pore chemistry is designed for 1,3-butadiene (C4H6) purification from complex C4 mixtures. The sulfonate anions decorated in the channel achieve selective recognition of C4H6 from other C4 olefins with subtle polarity differences through C-H⋅⋅⋅O-S interactions, affording recorded C4H6/trans-2-C4H8 selectivity (4.4). Meanwhile, the shrunken mouth of the channel with a suitable pore size (4.6 Å) exhibits exclusion effect to the larger molecules cis-2-C4H8, iso-C4H8, n-C4H10 and iso-C4H10. Benefiting from the moderate C4 olefins binding affinity exhibited by sulfonate anions, the adsorbed C4H6 could be easily regenerated near ambient conditions. Polymer-grade 1,3-butadiene (99.5 %) is firstly obtained from 7-component C4 mixtures via one adsorption-desorption cycle. The work demonstrates the great potential of synergistic recognition of size-sieving and thermodynamically equilibrium in dealing with complex mixtures.

2.
J Am Chem Soc ; 146(14): 9939-9946, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547486

RESUMEN

Selective recognition of 1,3-butadiene from complex olefin isomers is vital for 1,3-butadiene purification, but the lack of porous materials with suitable pore structures results in poor selectivity and low capacity in C4 olefin separation. Herein, two sulfonate-functionalized organic frameworks, ZU-601 and ZU-602, are designed and show impressive separation performance toward C4 olefins. Benefiting from the suitable aperture size caused by the flexibility of coordinated organic ligand, ZU-601, ZU-602 that are pillared with different sulfonate anions could discriminate C4 olefin isomers with high uptake ratio: 1,3-butadiene/1-butene (207), 1,3-butadiene/trans-2-butene (10.1). Meanwhile, their layer-stacked structure enables the utilization of both intra- and interlayer space, enhancing the accommodation of guest molecules. ZU-601 exhibits record high 1,3-butadiene adsorption capacity of 2.90 mmol g-1 (0.5 bar, 298 K) among the reported flexible porous materials with high 1,3-butadiene/1-butene selectivity. The breakthrough experiments confirm their superior separation ability even for all five C4 olefin isomers, and the molecular-level structural change is well elucidated via powder, crystal analysis, and simulation studies. The work provides ideas toward advanced materials design with simultaneous high separation capacity and high separation selectivity for challenging separations.

3.
Angew Chem Int Ed Engl ; 61(39): e202208756, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35916152

RESUMEN

The engineering and tailoring of porous materials to realize the precise discrimination of CO2 and C2 H2 , with almost identical kinetic diameters, is a challenging task. We herein report the first example of the kinetic-sieving of relatively larger molecule of C2 H2 from CO2 by a novel sulfonic anion-pillared hybrid ultramicroporous materials of ZU-610a. Specifically, ZU-610 constructed from copper(II), isonicotinic acid and 1,2-ethanedisulfonic acid is synthesized and shows the preferential affinity for C2 H2 over CO2 . After the post-synthetic heat treatment of ZU-610, ZU-610a with a contracted aperture is obtained. Interestingly, the C2 H2 -selctive ZU-610 was reversed to the CO2 -selective ZU-610a. High purity C2 H2 (>99.5 %) could be directly obtained from the dynamic breakthrough experiments on an equimolar C2 H2 /CO2 mixture at 298 K. This study provides guidance for the design of adsorbents aimed at separation systems with similar kinetic diameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA