Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(4): 3330-3335, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553950

RESUMEN

MicroRNAs (miRNAs) modulate a variety of cellular signaling pathways and play a vital role in cell-to-cell communication. The overlapped expression of a certain miRNA is commonly reported to be related to cancers. Therefore, combined detection of multiple miRNAs is of great significance for cancer diagnosis. Herein, we developed a FeII 4L4 tetrahedron-assisted three-way junction (3WJ) probe, which exhibited a higher stability than the normal 3WJ probe, for multiple miRNA detection. In this method, the simultaneous existence of miRNA-21 and miRNA-144 triggers the release of the Y3 sequence in the FeII 4L4 tetrahedron-assisted 3WJ probe, which in turn triggers subsequent CRISPR-Cas12a-assisted rolling circle amplification. Based on this, simultaneous detection of miRNA-21 and miRNA-144 was achieved. Furthermore, we also applied this method to the detection of miRNAs in clinical samples and achieved good agreement with quantitative real-time polymerase chain reaction (qRT-PCR), indicating its significant potentials in early diagnosis and treatment of cancer.

2.
Am J Hum Genet ; 105(4): 803-812, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564438

RESUMEN

Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last follow-up on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.


Asunto(s)
Pruebas Genéticas/métodos , Pérdida Auditiva/diagnóstico , Beijing , Pruebas con Sangre Seca , Femenino , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...