Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125026, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39216145

RESUMEN

Raman spectroscopy has emerged as a crucial mineral analysis technique in planetary surface exploration missions. Nonetheless, the inherently low Raman scattering efficiency of planetary silicate materials makes it challenging to extract enough Raman information. Theoretical and experimental studies of the remote Raman scattering properties of planetary materials are also urgent requirements for future lunar and planetary explorations. Here, Shandong University Remote Raman Spectrometer (SDU-RRS) was developed to demonstrate the feasibility of lunar remote Raman technology and conduct preliminary research on remote Raman scattering properties. SDU-RRS utilizes a pulsed 532 nm laser, a non-focal Cassegrain telescope, a volume phase holographic grating, an intensified charge-coupled device, and the time-gating technique to detect weak-signal silicate minerals. The spectral resolution obtained with atomic emission lamps was <4.91 cm-1, and the wavelength accuracy was <1 cm-1, across the spectral range of 241-2430 cm-1. SDU-RRS can detect natural augite within a feldspar-olivine-augite matrix at a concentration of 20 % at ∼1 m under ambient lighting conditions. A series of experiments were conducted to evaluate the influence of measurement conditions and physical matrix effects on acquired Raman signals, either qualitatively or quantitatively, on geological materials. The study indicates that the transmission of Raman-scattered light conforms to Lambert's cosine law, and a linear correlation exists between Raman intensity and laser power. The study also evaluated the impact of grain size, surface roughness, porosity, and shadow-hiding effects. Reducing grain size decreases Raman intensity and broadens Raman spectra. These characteristics are essential for achieving definitive mineralogical information from granular materials by remote Raman spectroscopy in lunar and planetary explorations.

2.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770280

RESUMEN

A remote Raman prototype with a function of excitation energy adjusting for the purpose of obtaining a Raman signal with good signal-to-noise ratio (SNR), saving power consumption, and possibly avoiding destroying a target by high energy pulses, which may have applications for Chinese planetary explorations, has been setup and demonstrated for detecting different minerals. The system consists of a spectrograph equipped with a thermoelectrically cooled charge-coupled device (CCD) detector, a telescope with 150 mm diameter and 1500 mm focus length, and a compact 1064 nm Nd:YAG Q-switched laser with an electrical adjusted pulse energy from 0 to 200 mJ/pulse. A KTP crystal was used for second harmonic generation in a 1064 nm laser to generate a 532 nm laser, which is the source of Raman scatting. Different laser pulse energies and integration time were used to obtain distinguishable remote Raman spectra of various samples. Results show that observed remote Raman spectra at a distance of 4 m enable us to identify silicates, carbonates, sulfates, perchlorates, water/water ice, and organics that have been found or may exist on extraterrestrial planets. Detailed Raman spectral assignments of the measured planetary materials and the feasible applications of remote Raman system for planetary explorations are discussed.

3.
Appl Opt ; 57(27): 7659-7666, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462029

RESUMEN

A double D-shaped hole optical fiber coated with graphene is proposed as a polarizer at the wavelength of 1.55 µm. As the planar surfaces of D-shaped holes are both coated with graphene, the interaction between the core and graphene can be doubled. Moreover, the interaction can be further improved by introducing functional materials into the holes. The proposed fiber provides a high extinction ratio (ER) and low insertion loss, and it operates in the single polarization mode. The ER of 42.5 dB with a 2.5-mm-long optical fiber can be achieved for a transverse-electric-pass polarizer, and the insertion loss is approximately 1.08 dB. Specifically, the proposed fiber can achieve simultaneously dual-band polarization at 1.55 µm and 1.31 µm. The proposed fiber is feasible for seamless integration in existing fiber systems. We hope our work benefits high-efficiency polarizers, and we believe that the proposed fiber has some potential applications in photonic integrated circuits.

4.
Appl Opt ; 57(10): 2446-2451, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714219

RESUMEN

A two-core hollow optical fiber for a polarizer based on surface plasmon resonance (SPR) is proposed and studied by the full-vector finite-element method. The proposed fiber consists of two circular cores, inner cladding, outer cladding, and a large central air hole. The two cores are arranged symmetrically in inner cladding and couple weakly with the air hole. There is no cross talk between cores because they are insulated by the air hole. A nanodimension Ag/Au bimetallic layer can be coated on the inner surface of the central air hole to support SPR. The numerical results show that single polarization of two cores is achieved simultaneously at the wavelength of 1.310 µm, due to strong coupling between the TM mode and the surface plasmon polariton mode. The extinction ratio 40.90 dB with 3 mm length is obtained, and the confinement loss of TE mode is 0.19 dB/cm. Moreover, the resonance wavelength is tunable by varying the refractive index of materials in the central air hole. The scheme is helpful for coupling an all-fiber polarizer with multicore polarization maintaining fibres (PMFs) and makes possible application in in-fiber integrated interferometric sensors while maintaining polarization.

5.
Appl Opt ; 56(24): 6993-7001, 2017 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-29048048

RESUMEN

We propose a kind of square porous-core photonic crystal fiber (PCF) for polarization-maintaining terahertz (THz) wave guidance. An asymmetry is introduced by implementing rectangular array air holes in the porous core of the PCF, and ultrahigh birefringence and low effective material loss (EML) can be achieved simultaneously. The properties of THz wave propagation are analyzed numerically in detail. The numerical results indicate that the proposed fiber offers a high birefringence of 0.063 and a low EML of 0.081 cm-1 at 1 THz. Moreover, a very low flattened dispersion profile is observed over a wide frequency domain of 0.85-1.9 THz. The zero flattened dispersion can be controlled. It is predicted that this PCF would be used potentially in polarization maintaining and dispersion management of THz waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...