RESUMEN
Fluorescence lifetime imaging microscopy (FLIM) provides quantitative readouts of biochemical microenvironments, holding great promise for biomedical imaging. However, conventional FLIM relies on slow photon counting routines to accumulate sufficient photon statistics, restricting acquisition speeds. Here we demonstrate SparseFLIM, an intelligent paradigm for achieving high-fidelity FLIM reconstruction from sparse photon measurements. We develop a coupled bidirectional propagation network that enriches photon counts and recovers hidden spatial-temporal information. Quantitative analysis shows over tenfold photon enrichment, dramatically improving signal-to-noise ratio, lifetime accuracy, and correlation compared to the original sparse data. SparseFLIM enables reconstructing spatially and temporally undersampled FLIM at full resolution and channel count. The model exhibits strong generalization across experimental modalities including multispectral FLIM and in vivo endoscopic FLIM. This work establishes deep learning as a promising approach to enhance fluorescence lifetime imaging and transcend limitations imposed by the inherent codependence between measurement duration and information content.
Asunto(s)
Microscopía Fluorescente , Fotones , Microscopía Fluorescente/métodos , Animales , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Óptica/métodos , Humanos , Ratones , Aprendizaje ProfundoRESUMEN
BACKGROUND: The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE: This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS: This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS: Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION: Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Asunto(s)
Inmunoterapia , Neoplasias , Imagen Óptica , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Inmunoterapia/métodos , Imagen Óptica/métodos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Neoplasias/inmunología , Animales , Técnicas Fotoacústicas/métodosRESUMEN
Tumor cells invade normal surrounding tissues through continuous division. In this study, we hypothesized that cell cycle regulation changes the immune efficacy of ovarian cancer. To investigate this hypothesis, a Förster resonance energy transfer (FRET) sensor was constructed to characterize the cell activity in real time. Cell shrinkage caused by apoptosis induces the aggregation of proteins on the cell membrane, leading to variations in the fluorescence lifetime of FRET sensors. Moreover, we tracked cell activity across various cycles following co-culture with an immune checkpoint inhibitor. Consequently, we assessed how cell cycle regulation influences immunotherapy in a tumor mouse model. This approach, which involves inhibiting typical cell cycle processes, markedly enhances the effectiveness of immunotherapy. Our findings suggest that modulating the cycle progression of cancer cells may represent a promising approach to enhance the immune response of ovarian cancer cells and the efficacy of immunotherapy based on immune checkpoint inhibitors.
Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Ováricas , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Humanos , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Inmunoterapia/métodos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Ciclo Celular/efectos de los fármacos , Apoptosis/efectos de los fármacosRESUMEN
Fluorescence imaging (FI) employing near-infrared (NIR) light within the range of ~750-1350 nm enables biomedical imaging several millimeters beneath the tissue surface. More recent investigations into the short-wave IR (SWIR) transparency windows between ~1550-1870 and 2100-2300 nm highlight their superior capabilities. This research presents a comparison of IR-FI of PbS quantum dots, emitting at 990, 1310, and 1580 nm, through the mouse scalp skin, skull, and brain. The SWIR fluorescence is the most effectively transmitted signal, showing particularly significant enhancement when passing through the skull, which causes high light scattering. For the analysis of the imaging results and light propagation through the organs, their spectra of attenuation, absorption, and scattering coefficients are measured. In view of biomedical imaging, attenuation due to light scattering is a more destructive factor. Hence, the spatial resolution and imaging contrast can be improved by operating in SWIR due to decreased light scattering.
RESUMEN
Single-shot spatial light interference microscopy (SS-SLIM) with a pair of non-polarizing beam splitters is proposed for substantially enhancing the speed and efficiency of conventional SLIM systems. Traditional methods are limited by the need for multiple-frame serial modulation and acquisition by spatial light modulators and detectors. Our approach integrates non-polarizing beam splitters to simultaneously capture four phase-shifted intensity images, increasing the imaging speed by at least fourfold while maintaining high quality. This capability is crucial for effectively monitoring the dynamic fluctuations of red blood cell membranes. Furthermore, the potential applications of the SS-SLIM system in biomedical research are demonstrated, particularly in scenarios requiring high temporal resolution and label-free imaging.
RESUMEN
Two-photon fluorescence lifetime microscopy (TP-FLIM) is a powerful quantitative imaging technique that characterizes and analyzes the structure and function of biological samples through a combination of intensity and lifetime imaging. Because TP-FLIM is independent of the fluorescence signal intensity and the fluorophore concentration, it is widely used in high-throughput, high-content drug screening and clinical diagnostics. Second harmonic generation (SHG) imaging technology has the advantages of high spatial resolution and imaging depth inherent to nonlinear optical imaging. Second harmonics often appear in noncentrosymmetric structures. Collagen tissue in biological organisms is a good example of these structures, showing strong harmonic effects. Therefore, SHG has been widely used for imaging of specific tissue structure imaging. TP-FLIM technology is highly sensitive for quantitatively detecting changes in microenvironments. The objective of this study is to examine pathological pulmonary fibrosis slices using a combined approach of TP-FLIM and SHG technology. The fluorescence lifetime data of pulmonary collagen fibers are analyzed by using phasor plot analysis methods, and normal collagen fibers and fibrotic collagen fibers are distinguished by calculating the aspect ratio from the SHG images formed by the collagen fibers. Our study provides a new method for a deeper understanding of the pathological mechanisms and clinical diagnosis of pulmonary fibrosis and other collagen fiber-related disorders.
RESUMEN
This publisher's note contains a correction to Opt. Lett.48, 3219 (2023)10.1364/OL.486644.
RESUMEN
Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.
RESUMEN
Solvatochromes have gained great attention because of their unique roles in monitoring biomolecular location, interaction, and dynamics. Particularly, solvatochromes presenting both red-shifting excitation and dual-band switchable emission are in great demand yet significantly difficult to come true. In this article, we disclose an aromatic alcohol-based pH-sensitive chromophore NIR-HBT that not only presents red-shifting excitation and solvent-dependent dual-band emission but also shows high photostability and excellent brightness. To the best of our knowledge, this is the first solvatochrome to simultaneously display these optical properties. Especially, in contrast to the reported dual-band solvatochromes whose solvatochromism is achieved by affecting their excited state behaviors, the solvatochromism of NIR-HBT is realized by modulating its ground state proton dissociation, which is a new solvatochromic mechanism that has not been reported. Furthermore, based on the dual-band solvatochromism of NIR-HBT and its intrinsic binding ability to GQs, near-infrared ratiometric detection of GQs is achieved. These results indicate that NIR-HBT is an attractive solvatochrome that can be used to develop near-infrared ratiometric biosensors for biological research. More broadly, the discovered solvatochromic mechanism can also open new horizons for exploring the solvatochrome.
RESUMEN
Nano-dispersed cerium dioxide is promising for use in medicine due to its unique physicochemical properties, including low toxicity, the safety of in vivo usage, active participation in different redox processes occurring in living cells, and its regenerative potential, manifested in the ability of CeO2 to participate repeatedly in redox reactions. In this work, we examined the biological activity of cerium dioxide nanoparticles (CeO2 NPs) synthesized by precipitation in mixed water/alcohol solutions at a constant pH of 9. This synthesis method allowed controlling the size and Ce3+/Ce4+ proportion on the surface of NPs, changing the synthesis conditions and obtaining highly stable suspensions of "naked" CeO2 NPs. Changes in the surface properties upon contact of CeO2 NPs with protein-rich media, e.g., bovine serum albumin and DMEM cell culture medium supplemented with 10% fetal bovine serum, the characteristics of nanoparticle uptake by mouse aortic endothelial cells and the antioxidant activity of the nanoparticles of different sizes were investigated by various state-of-the-art analytical methods.
Asunto(s)
Cerio , Nanopartículas , Tamaño de la Partícula , Propiedades de Superficie , Cerio/química , Cerio/farmacología , Animales , Ratones , Nanopartículas/química , Antioxidantes/química , Antioxidantes/farmacología , Células Endoteliales/efectos de los fármacos , Albúmina Sérica Bovina/química , BovinosRESUMEN
We demonstrate a novel, to the best of our knowledge, high-temperature pressure sensor based on a highly birefringent fiber Bragg grating (Hi-Bi FBG) fabricated in a dual side-hole fiber (DSHF). The Hi-Bi FBG is generated by a femtosecond laser directly written sawtooth structure in the DSHF cladding along the fiber core through the slow axis (i.e., the direction perpendicular to the dual-hole axis). The sawtooth structure serves as an in-fiber stressor and also generates Bragg resonance due to its periodicity. The DSHF was etched by hydrofluoric acid to increase its pressure sensitivity, and the diameter of two air holes was enlarged from 38.2 to 49.6â µm. A Hi-Bi FBG with a birefringence of up to 1.8 × 10-3 was successfully created in the etched DSHF. Two distinct reflection peaks could be observed by using a commercial FBG interrogator. Moreover, pressure measurement from 0 to 3â MPa at a high temperature of 700°C was conducted by monitoring the birefringence-induced peak splits and achieved a high-pressure sensitivity of -21.2â pm/MPa. The discrimination of the temperature and pressure could be realized by simultaneously measuring the Bragg wavelength shifts and peak splits. Furthermore, a wavelength-division-multiplexed (WDM) Hi-Bi FBG array was also constructed in the DSHF and was used for quasi-distributed high-pressure sensing up to 3â MPa. As such, the proposed femtosecond laser-inscribed Hi-Bi FBG is a promising tool for high-temperature pressure sensing in harsh environments, such as aerospace vehicles, nuclear reactors, and petrochemical industries.
RESUMEN
Stimulated emission depletion (STED) microscopy holds tremendous potential and practical implications in the field of biomedicine. However, the weak anti-bleaching performance remains a major challenge limiting the application of STED fluorescent probes. Meanwhile, the main excitation wavelengths of most reported STED fluorescent probes were below 500â nm or above 600â nm, and few of them were between 500-600â nm. Herein, we developed a new tetraphenyl ethylene-functionalized rhodamine dye (TPERh) for mitochondrial dynamic cristae imaging that was rhodamine-based with an excitation wavelength of 560â nm. The TPERh probe exhibits excellent anti-bleaching properties and low saturating stimulated radiation power in mitochondrial STED super-resolution imaging. Given these outstanding properties, the TPERh probe was used to measure mitochondrial deformation, which has positive implications for the study of mitochondria-related diseases.
RESUMEN
Polarization-resolved second-harmonic generation (PSHG) microscopy is widely used in investigating the structural and morphological alterations of collagen. However, the resolution of second-harmonic generation (SHG) imaging remains constrained by optical diffraction, resulting in the polarization extraction of collagen characteristics from the average properties of collagen fibers. In this study, multifocal structured illumination microscopy (MSIM) was combined with PSHG to achieve polarization-resolved super-resolution imaging of second-harmonic generation signals. For the first time to our knowledge, periodic structures with an average pitch of 277â nm were observed in mouse tail tendons using optical microscopy, and the orientation angle of fibrils within each period was found to exhibit an alternating arrangement along the axis in a regular pattern.
RESUMEN
In vivo near infrared (NIR) fluorescence imaging and laser speckle contrast imaging (LSCI) are emerging optical bioimaging modalities, which can provide information on blood vessels morphology, volume and the blood flow velocity. Optical tissue clearing (OTC) technique addresses a light scattering problem in optical bioimaging, which is imperative for the transcranial brain imaging. Herein, we report an approach combining NIR fluorescence and LSC microscopy imaging with OTC. A liposomal nanoformulation comprising NIR fluorescent dye ICG and photosensitizer BPD was synthesized and injected intravenously into mouse with OTC treated skull. Transcranial excitation of BPD in nanoliposomes resulted in the localized, irradiation dose dependent photodynamic damage of the brain blood vessels, which was manifested both in NIR fluorescence and LSC transcranial imaging, revealing changes in the vessels morphology, volume and the blood flow rate. The developed approach allows for bimodal imaging guided, localized vascular PDT of cancer and other diseases.
RESUMEN
To enhance our comprehension of the fundamental mechanisms driving tumor metabolism and metastasis, it is essential to dynamically monitor intratumoral lipid droplet (LD) and collagen processes in vivo. Traditional LD analysis in tumors predominantly relies on observations of in vitro cells or tissue slices, which unfortunately hinder real-time insights into the dynamic behavior of LDs during in vivo tumor progression. In this study, we developed a dual-modality imaging technique that combines coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy for in vivo monitoring of tumor LDs and collagen alterations, assisted by a murine breast cancer 4T1 cell-based dorsal skinfold window. Specifically, we accomplished real-time observations and quantitative analysis of the LD size, density, and collagen alignment within living tumors through CARS/SHG imaging. Additionally, our findings demonstrate that real-time LD monitoring provides a valuable means of assessing the efficacy of anticancer drugs in vivo. We evaluated the impact of adipose activators on lipid metabolism, oxidative stress, and tumor suppression by monitoring changes in LD size and density. Overall, this study highlights the potential of dual-modality CARS/SHG microscopy as a sensitive and flexible tool for antitumor therapeutic strategies.
RESUMEN
Sapphire fiber Bragg grating (SFBG) is a promising high-temperature strain sensor due to its melting point of 2045°C. However, the study on the long-term stability of SFBG under high temperature with an applied strain is still missing. In this paper, we reported for the first time to our knowledge on the critical temperature point of plastic deformation of the SFBG and demonstrated that the SFBG strain sensor can operate stably below 1200°C. At first, we experimentally investigated the topography and the spectral characteristics of the SFBG at different temperatures (i.e., 25°C, 1180°C, and 1600°C) with applied 650⠵ε. The reflection peak of the SFBG exhibits a redshift of about 15â nm and broadens gradually within 8â h at 1600°C, and the tensile force value decreases by 0.60â N in this process. After the test, the diameter of the SFBG region decreases from 100 to 88.6â µm, and the grating period is extended from 1.76 to 1.79â µm. This indicates that the plastic deformation of the SFBG happened indeed, and it was elongated irreversibly. Moreover, the stability of the Bragg wavelength of the SFBG under high temperature with the applied strain was evaluated. The result demonstrates the SFBG can be used to measure strain reliably below 1200°C. Furthermore, the strain experiments of SFBG at 25°C, 800°C, and 1100°C have been carried out. A linear fitting curve with high fitness (R2 > 0.99) and a lower strain measurement error (<15⠵ε) can be obtained. The aforementioned results make SFBG promising for high-temperature strain sensing in many fields, such as, power plants, gas turbines, and aerospace vehicles.
RESUMEN
Marine bacteria have been considered as important participants in revealing various carbon/sulfur/nitrogen cycles of marine ecosystem. Thus, how to accurately identify rare marine bacteria without a culture process is significant and valuable. In this work, we constructed a single-cell Raman spectra dataset from five living bacteria spores and utilized convolutional neural network to rapidly, accurately, nondestructively identify bacteria spores. The optimal CNN architecture can provide a prediction accuracy of five bacteria spore as high as 94.93% ± 1.78%. To evaluate the classification weight of extracted spectra features, we proposed a novel algorithm by occluding fingerprint Raman bands. Based on the relative classification weight arranged from large to small, four Raman bands located at 1518, 1397, 1666, and 1017 cm-1 mostly contribute to producing such high prediction accuracy. It can be foreseen that, LTRS combined with CNN approach have great potential for identifying marine bacteria, which cannot be cultured under normal condition.
Asunto(s)
Aprendizaje Profundo , Pinzas Ópticas , Análisis de la Célula Individual , Espectrometría Raman , Esporas Bacterianas , Esporas Bacterianas/aislamiento & purificación , Factores de Tiempo , Organismos AcuáticosRESUMEN
Deep learning offers promise in enhancing low-quality images by addressing weak fluorescence signals, especially in deep in vivo mouse brain imaging. However, current methods struggle with photon scarcity and noise within in vivo deep mouse brains, and often neglecting tissue preservation. In this study, we propose an innovative in vivo cortical fluorescence image restoration approach, combining signal enhancement, denoising, and inpainting. We curated a deep brain cortical image dataset and developed a novel deep brain coordinate attention restoration network (DeepCAR), integrating coordinate attention with optimized residual networks. Our method swiftly and accurately restores deep cortex images exceeding 800 µm, preserving small-scale tissue structures. It boosts the peak signal-to-noise ratio (PSNR) by 6.94 dB for weak signals and 11.22 dB for large noisy images. Crucially, we validate the effectiveness on external datasets with diverse noise distributions, structural features compared to those in our training data, showcasing real-time high-performance image restoration capabilities.
Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Animales , Ratones , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Relación Señal-Ruido , NeuroimagenRESUMEN
Significance: Two-photon fluorescence microscopy (TPFM) excited by Gaussian beams requires axial tomographic scanning for three-dimensional (3D) volumetric imaging, which is a time-consuming process, and the slow imaging speed hinders its application for in vivo brain imaging. The Bessel focus, characterized by an extended depth of focus and constant resolution, facilitates the projection of a 3D volume onto a two-dimensional image, which significantly enhances the speed of volumetric imaging. Aim: We aimed to demonstrate the ability of a TPFM with a sidelobe-free Bessel beam to provide a promising tool for research in live biological specimens. Approach: Comparative in vivo imaging was conducted in live mouse brains and transgenic zebrafish to evaluate the performance of TPFM and Bessel-beam-based TPFM. Additionally, an image-difference method utilizing zeroth-order and third-order Bessel beams was introduced to effectively suppress background interference introduced by sidelobes. Results: In comparison with traditional TPFM, the Bessel-beams-based TPFM demonstrated a 30-fold increase in imaging throughput and speed. Furthermore, the effectiveness of the image-difference method was validated in live biological specimens, resulting in a substantial enhancement of image contrast. Importantly, our TPFM with a sidelobe-free Bessel beam exhibited robustness against axial displacements, a feature of considerable value for in vivo experiments. Conclusions: We achieved rapid, high-contrast, and robust volumetric imaging of the vasculature in live mouse brains and transgenic zebrafish using our TPFM with a sidelobe-free Bessel beam.
Asunto(s)
Encéfalo , Pez Cebra , Animales , Ratones , Encéfalo/diagnóstico por imagen , Microscopía Fluorescente , Distribución Normal , FotonesRESUMEN
Cancer remains a global health challenge, demanding early detection and accurate diagnosis for improved patient outcomes. An intelligent paradigm is introduced that elevates label-free nonlinear optical imaging with contrastive patch-wise learning, yielding stain-free nonlinear optical computational histology (NOCH). NOCH enables swift, precise diagnostic analysis of fresh tissues, reducing patient anxiety and healthcare costs. Nonlinear modalities are evaluated, including stimulated Raman scattering and multiphoton imaging, for their ability to enhance tumor microenvironment sensitivity, pathological analysis, and cancer examination. Quantitative analysis confirmed that NOCH images accurately reproduce nuclear morphometric features across different cancer stages. Key diagnostic features, such as nuclear morphology, size, and nuclear-cytoplasmic contrast, are well preserved. NOCH models also demonstrate promising generalization when applied to other pathological tissues. The study unites label-free nonlinear optical imaging with histopathology using contrastive learning to establish stain-free computational histology. NOCH provides a rapid, non-invasive, and precise approach to surgical pathology, holding immense potential for revolutionizing cancer diagnosis and surgical interventions.