RESUMEN
PURPOSE: To evaluate nnU-net's performance in automatically segmenting and volumetrically measuring ocular adnexal lymphoma (OAL) on multi-sequence MRI. METHODS: We collected T1-weighted (T1), T2-weighted and T1-weighted contrast-enhanced images with/without fat saturation (T2_FS/T2_nFS, T1c_FS/T1c_nFS) of OAL from four institutions. Two radiologists manually annotated lesions as the ground truth using ITK-SNAP. A deep learning framework, nnU-net, was developed and trained using two models. Model 1 was trained on T1, T2, and T1c, while Model 2 was trained exclusively on T1 and T2. A 5-fold cross-validation was utilized in the training process. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), sensitivity, and positive prediction value (PPV). Volumetric assessment was performed using Bland-Altman plots and Lin's concordance correlation coefficient (CCC). RESULTS: A total of 147 patients from one center were selected as training set and 33 patients from three centers were regarded as test set. For both Model 1 and 2, nnU-net demonstrated outstanding segmentation performance on T2_FS with DSC of 0.80-0.82, PPV of 84.5-86.1%, and sensitivity of 77.6-81.2%, respectively. Model 2 failed to detect 19 cases of T1c, whereas the DSC, PPV, and sensitivity for T1_nFS were 0.59, 91.2%, and 51.4%, respectively. Bland-Altman plots revealed minor tumor volume differences with 0.22-1.24 cm3 between nnU-net prediction and ground truth on T2_FS. The CCC were 0.96 and 0.93 in Model 1 and 2 for T2_FS images, respectively. CONCLUSION: The nnU-net offered excellent performance in automated segmentation and volumetric assessment in MRI of OAL, particularly on T2_FS images.
Asunto(s)
Aprendizaje Profundo , Linfoma , Imagen por Resonancia Magnética , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Anciano , Linfoma/diagnóstico por imagen , Adulto , Interpretación de Imagen Asistida por Computador/métodos , Sensibilidad y Especificidad , Neoplasias del Ojo/diagnóstico por imagen , Medios de Contraste , Anciano de 80 o más Años , Estudios RetrospectivosRESUMEN
Objective: The presence of urinary autoantibodies in patients with systemic lupus erythematosus (SLE) has been confirmed by several studies; however, the significance of their presence in urine remains unclear. This study aims to further investigate the association between urine autoantibodies and disease activity as well as organ involvement in SLE. Methods: This cross-sectional study included 89 SLE patients. Data collected included anti-nuclear antibody (ANA), anti-ENA antibodies, and anti-dsDNA antibody levels in both serum and urine, complement (C) 3, C4 levels in serum, SLE disease activity index-2000 (SLEDAI-2000), renal domains of SLEDAI (RSLEDAI) and non-renal SLEDAI (NRSLEDAI). Results: The rate of positive urine ANA (uANA) was 33.3% (29/87) among the enrolled patients. Compared to the uANA negative group, the positive group exhibited significantly higher SLEDAI-2000 scores (7.85 ± 5.88 vs. 18.69 ± 6.93, p < 0.001), RSLEDAI scores [0 (0, 4.0) vs. 12.0 (8.0, 16.0), p < 0.001], and NRSLEDAI [4 (2.0, 8.0) vs. 6.0 (4.0, 9.5), p = 0.038]. Patients with positive urine anti-Sm antibody demonstrated significantly elevated SLEDAI-2000 scores compared to those who were negative (25.0 ± 8.80 vs. 10.09 ± 6.63, p < 0.001). Similarly, they also had higher RSLEDAI [16.0 (12.0, 16.0) vs. 4.0 (0, 8.0), p < 0.001] and NRSLEDAI [9.5 (6.0, 13.5) vs. 4.0 (3.0, 8.0), p = 0.012], as well as a greater prevalence of renal involvement compared to their negative counterparts (100% vs. 58.2, p = 0.022). There was a positive correlation between uANA titer and both SLEDAI-2000 (rs = 0.663, p < 0.001) and RSLEDAI (rs = 0.662, p < 0.001). The serum anti-dsDNA antibody level did not exhibit a significant correlation with RSLEDAI (rs = 0.143, p = 0.182). Conversely, the urine anti-dsDNA antibody level demonstrated a significant positive correlation with RSLEDAI (rs = 0.529, p < 0.001). Conclusion: Urine ANA is associated with both global SLEDAI and RSLEDAI scores. Urine anti-Sm antibody is associated with an increased incidence of renal involvement in SLE. The urine anti-dsDNA antibody level, rather than the serum anti-dsDNA antibody level, exhibits a significant association with RSLEDAI in SLE.
RESUMEN
Delineating the neuropathological characteristics of primary open-angle glaucoma (POAG) is critical for understanding its pathophysiology. While temporal stability represents a crucial aspect of the brain's functional architecture, the specific patterns underlying its contribution to POAG remain unclear. This study aims to analyze the brain functional abnormalities in POAG using functional stability, a dynamic functional connectivity (DFC) approach based on resting-state functional magnetic resonance imaging (rs-fMRI). Seventy patients with POAG and forty-five healthy controls underwent rs-fMRI and ophthalmological examinations. The stability of DFC was calculated as the concordance of DFC over time using a sliding-window approach, and the differences in stability between the two groups were compared. Subsequently, Spearman's correlation analyses were conducted to examine the relationship between functional stability and clinical indicators. Compared with healthy controls, patients with POAG exhibited significantly decreased functional stability in the visual network, including the early visual center, ventral and dorsal stream visual cortex in both hemispheres. Conversely, stability values increased in the bilateral inferior parietal gyrus and right inferior frontal cortex. In POAG patients, the dynamic stability of the left early visual cortex and ventral stream visual cortex correlated with the mean deviation of visual field defects (r = 0.251, p = 0.037). The evidence from this study suggests that functional stability may provide a new understanding of brain alterations in the progression of POAG.
Asunto(s)
Encefalopatías , Glaucoma de Ángulo Abierto , Humanos , Imagen por Resonancia Magnética/métodos , Glaucoma de Ángulo Abierto/diagnóstico por imagen , Encéfalo , Mapeo Encefálico , Encefalopatías/patologíaRESUMEN
PURPOSE: Primary open-angle glaucoma (POAG) is a widespread neurodegenerative condition affecting brain regions involved in visual processing, somatosensory processing, motor control, emotional regulation and cognitive functions. Cerebral hemodynamic dysfunction contributes to the pathogenesis of glaucomatous neurodegeneration. We aimed to investigate cerebral blood flow (CBF) redistributed patterns in visual and higher-order cognitive cortices and its relationship with clinical parameters in POAG, and we hypothesized that CBF changes together across regions within the same functional network. METHODS: Forty-five POAG patients and 23 normal controls underwent three-dimensional pseudocontinuous arterial spin labeling MRI to measure the resting-state CBF. Group comparisons of CBF and correlations between CBF changes and ophthalmological and neuropsychological indices were assessed. We determined CBF-based functional connectivity (CBFC) by calculating the correlations between specific regions and all other brain voxels and compared CBFC differences between groups. RESULTS: The patients exhibited decreased CBF in visual cortices, postcentral gyrus, inferior parietal lobule and cerebellum and increased CBF in medial, middle, and superior frontal gyri, as well as the insula. The reduced CBF in the visual cortices positively correlated with visual field defect (r = 0.498, p = 0.001) in POAG patients, while the increased CBF in the right medial frontal gyrus was negatively associated with the visual field defect (r = -0.438, p = 0.004) and positively associated with the cup-to-disc ratio (r = 0.469, p = 0.002). POAG patients showed negative connections weakening or converting to mild positive connections, as well as positive connections converting to negative connections. CONCLUSIONS: Regional and interregional CBF properties confirmed that the aberrant brain regions extend beyond the visual pathway, including the somatosensory, emotional and cognitive networks, which highlights the importance of cerebral hemodynamic dysfunction in the pathophysiology of spreading neurodegeneration in POAG.
Asunto(s)
Encefalopatías , Glaucoma de Ángulo Abierto , Humanos , Imagen por Resonancia Magnética/métodos , Glaucoma de Ángulo Abierto/diagnóstico por imagen , Marcadores de Spin , Encéfalo , Encefalopatías/patología , Circulación Cerebrovascular/fisiologíaRESUMEN
BACKGROUND: Blood perfusion of the optic nerve (ON) plays a key role in many optic neuropathies. Microvascular changes precede or accompany neuronal changes, and detecting these changes at an early stage may facilitate early treatment to avoid blindness. However, the quantification of ON blood perfusion remains a challenge. This study aimed to evaluate the viability of three-dimensional pseudocontinuous arterial spin labelling (3D-pCASL) MRI for the quantification of ON blood flow (BF). NEW METHOD: The ON segmentation was performed using nnFormer on a cohort of ten participants (4 males, 6 females, 25-59 years old). Subsequently, the mean BF of each ON segment was calculated using whole brain 3D-pCASL image data. RESULTS: The average ON-BF values of the left and right intraorbital segments, left and right intracanalicular segments, left and right intracranial segments, optic chiasma, and left and right optic tract were 41.308 mL/100 g/min, 43.281 mL/100 g/min, 53.188 mL/100 g/min, 57.202 mL/100 g/min, 45.089 mL/100 g/min, 49.554 mL/100 g/min, 42. 326 mL/100 g/min, 43.831 mL/100 g/min and 45.176 mL/100 g/min, respectively. The ON-BF correlated with cerebral BF (r = 0.503, p = 0.024). COMPARISON WITH EXISTING METHOD(S): The 3D-pCASL can measure tissue microvascular blood perfusion in absolute quantitative units with good test-retest repeatability over a wide field of view and without restrictions on depth. The use of the nnFormer makes the measurement easy, objective and reproducible. CONCLUSIONS: The study showed that, 3D-pCASL may be a promising tool for detecting abnormal ON-BF. In particular, 3D-pCASL coupled with the nnFormer provides an objective, reproducible, and reliable method to quantify BF in ON.
Asunto(s)
Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Circulación Cerebrovascular/fisiología , Nervio ÓpticoRESUMEN
Previous studies have found a link between tinnitus and cognitive impairment, even leading to dementia. However, the mechanisms underlying this association are not clear. The purpose of this study was to explore intrinsic network changes in tinnitus and hearing loss patients with cognitive disorders. We included 17 individuals with bilateral idiopathic tinnitus, hearing loss, and cognitive impairment (PA) and 21 healthy controls. We identified resting-state networks (RSNs) and measured intra-network functional connectivity (FC) values via independent component analysis (ICA). We also evaluated correlations between RSNs and clinical characteristics. Compared with the healthy controls, the PA group showed decreased connectivity within the ventral attention network, dorsal attention network (DAN), visual network, left frontoparietal network, right frontoparietal network, sensorimotor network, and increased connectivity within the executive control network. MoCA (Montreal Cognitive Assessment) scores were negatively correlated with the FC values for left calcarine within the DAN. We identified abnormal intrinsic connectivity in several brain networks, mainly involving cognitive control, vision, sensorimotor function, and the cerebellum, in tinnitus patients with cognitive impairment. It may be possible to use the FC strength of the left calcarine within the DAN as an imaging marker to predict cognitive impairment in tinnitus patients.
RESUMEN
Despite the existing studies relating systemic lupus erythematosus (SLE) to changes in gut microbiota, the latter is affected by external factors such as diet and living environment. Herein, we compared the diversity and composition of gut microbiota in SLE patients and in their healthy family members who share the same household, to link gut microbiota, diet and SLE clinical manifestations. The study cohort included 19 patients with SLE and 19 of their healthy family members. Daily nutrition was assessed using a food frequency questionnaire (FFQ). Microbiota was analyzed using amplicons from the V4 regions of the 16S rRNA gene, to obtain microbiota diversity, taxa relative abundances and network analysis. The gut microbiota in the SLE group had lower alpha diversity and higher heterogeneity than the control group. SLE patients had decreased Acidobacteria, Gemmatimonadetes, Nitrospirae and Planctomycetes at the phylum level, and increased Streptococcus, Veillonella, Clostridium_XI, and Rothia at the genus level. Streptococcus was extremely enriched among patients with lupus nephritis. Lactobacillus, Clostridium_XlVa, Lachnospiracea_incertae_sedis and Parasutterella OTUs were associated with diet and clinical features of SLE. Finally, the gut microbiota of SLE patients remained different from that in healthy controls even after accounting for living conditions and diet.
RESUMEN
Background: Hearing loss and tinnitus often occur concurrently and play a vital role in the development and progression of cognitive impairment (CI). However, the exact mechanism remains unclear. This study aimed to investigate the changes in intrinsic brain connectivity in patients with hearing loss and tinnitus accompanied by CI. Methods: A total of 24 hearing loss and tinnitus patients with CI, 23 hearing loss and tinnitus patients with cognitive normality (CN), and 20 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Resting-state networks (RSNs) were identified and intrinsic functional connectivity (FC) values were measured using independent component analysis (ICA). FC values within the RSNs were measured and correlations between altered RSNs and clinical characteristics were evaluated using Pearson correlation analysis. Results: No significant difference was found in the disease duration or Tinnitus Handicap Inventory (THI) scores between the CI and CN groups. Eleven RSNs differed significantly among the 3 groups. Compared with the CN group, the CI group exhibited higher FC in the right supramarginal and left middle temporal gyri within the auditory network (AN), the left inferior parietal, but supramarginal and angular gyrus (IPL) gyrus within the right frontoparietal network (RFPN), the right middle occipital gyrus (R_MOG) and left superior frontal gyrus (L_SFG) within the dorsal attention network (DAN), the right middle frontal gyrus (R_MFG) within the executive control network (ECN), the right cuneus (R_cuneus) within the visual network (VN), and the left inferior frontal gyrus within the salience network (SAN), as well as lower FC in the right superior temporal gyrus (R_STG) within the AN and the left FPN (LFPN) and the right superior frontal gyrus (R_SFG) within the LFPN. Montreal Cognitive Assessment (MoCA) scores were negatively correlated with the FC values of the R_MFG and positively correlated with the FC values of the R_STG and R_SFG. Conclusions: Aberrant intrinsic FC was observed in the R_MFG within the ECN, the R_STG within the AN, and the R_SFG within the LFPN in hearing loss and tinnitus patients, which may be a biomarker for the severity of CI in hearing loss and tinnitus patients.
RESUMEN
Purpose: Accurate preoperative prediction of the malignant transformation of sinonasal inverted papilloma (IP) is essential for guiding biopsy, planning appropriate surgery and prognosis of patients. We aimed to investigate the value of MRI-based radiomics in discriminating IP from IP-transformed squamous cell carcinomas (IP-SCC). Methods: A total of 236 patients with IP-SCC (n=92) or IP (n=144) were enrolled and divided into a training cohort and a testing cohort. Preoperative MR images including T1-weighted, T2-weighted, and contrast enhanced T1-weighted images were collected. Radiomic features were extracted from MR images and key features were merged into a radiomic model. A morphological features model was developed based on MR morphological features assessed by radiologists. A combined model combining radiomic features and morphological features was generated using multivariable logistic regression. For comparison, two head and neck radiologists were independently invited to distinguish IP-SCC from IP. The area under the receiver operating characteristics curve (AUC) was used to assess the performance of all models. Results: A total of 3948 radiomic features were extracted from three MR sequences. After feature selection, we saved 15 key features for modeling. The AUC, sensitivity, specificity, and accuracy on the testing cohort of the combined model based on radiomic and morphological features were respectively 0.962, 0.828, 0.94, and 0.899. The diagnostic ability of the combined model outperformed the morphological features model and also outperformed the two head and neck radiologists. Conclusions: A combined model based on MR radiomic and morphological features could serve as a potential tool to accurately predict IP-SCC, which might improve patient counseling and make more precise treatment planning.
RESUMEN
Individuals with congenital monocular blindness may have specific brain changes since the brain is prenatally deprived of half the normal visual input. To explore characteristic brain functional changes of congenital monocular blindness, we analyzed resting-state functional MRI (rs-fMRI) data of 16 patients with unilateral congenital microphthalmia and 16 healthy subjects with normal vision to compare intergroup differences of amplitude of low frequency fluctuations (ALFFs), functional connectivity (FC), and network topolgoical properties. Compared with controls, patients with microphthalmia exhibited significantly lower ALFF values in the left inferior occipital and temporal gyri, superior temporal gyrus, inferior parietal lobe and post-central gyrus, whereas higher ALFF in the right middle and inferior temporal gyri, middle and superior frontal gyri, left superior frontal, and temporal gyri, such as angular gyrus. Meanwhile, FC between left medial superior frontal gyrus and angular gyrus, FC between left superior temporal gyrus and inferior parietal lobe and post-central gyrus decreased in the patients with congenital microphthalmia. In addition, a graph theory-analysis revealed increased regional network metrics (degree centrality and nodal efficiency) in the middle and inferior temporal gyri and middle and superior frontal gyri, while decreased values in the inferior occipital and temporal gyri, inferior parietal lobule, post-central gyrus, and angular gyrus. Taken together, patients with congenital microphthalmia had widespread abnormal activities within neural networks involving the vision and language and language-related regions played dominant roles in their brain networks. These findings may provide clues for functional reorganization of vision and language networks induced by the congenital monocular blindness.
RESUMEN
Adolescents with early profound deafness may present with distractibility and inattentiveness. The brain mechanisms underlying these attention impairments remain unclear. We performed resting-state functional magnetic resonance imaging to investigate the functional connectivity of the superior temporal and transverse temporal gyri in 25 inattentive adolescents with bilateral prelingual profound deafness, and compared the results with those of 27 age-matched normal controls. Pearson and Spearman's rho correlation analyses were used to investigate the correlations of altered functional connectivity with the clinical parameters, including the duration of hearing loss sign language, and hearing aid usage. Compared with normal controls, prelingual profound deafness demonstrated mainly decreased resting-state functional connectivity between the deprived auditory regions and several other brain functional networks, including the attention control, language comprehension, default-mode, and sensorimotor networks. Moreover, we also found enhanced resting-state functional connectivity between the deprived auditory cortex and salience network. These results indicate a negative impact of early hearing loss on the attentional and other high cognitive networks, and the use of sign language and hearing aids normalized the participants' connectivity between the primary auditory cortex and attention networks, which is crucial for the early intervention and clinical care of deaf adolescents.
Asunto(s)
Corteza Auditiva , Sordera , Pérdida Auditiva , Adolescente , Corteza Auditiva/diagnóstico por imagen , Mapeo Encefálico , Cognición , Sordera/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodosRESUMEN
Individuals with congenital monocular blindness are born without binocular vision and stereopsis, the effects of which on the brain microstructure are largely unknown. This study aims to investigate the microstructural characteristics of white matter tracts over the whole brain in congenital monocular blindness. We used T1-weighted MRI and diffusion tensor imaging (DTI) to investigate the microstructural characteristics of the brain in 16 patients with unilateral congenital microphthalmia (CM) and 16 matched normally sighted controls. The DTI-derived metrics were assessed using atlas-level analysis with FDR correction and TBSS-level analysis with threshold-free cluster enhancement correction (TFCE). CM exhibited significantly abnormal DTI-derived indices (p < 0.05, q < 0.05 of FDR correction) as follows: 1) declined fractional anisotropy (FA) in the inferior fronto-occipital fasciculus contralateral to the affected eye, bilateral inferior longitudinal fasciculus, while enhanced in the ipsilateral cingulum; 2) increased local diffusion homogeneity in the contralateral corticospinal tract while decreased in the ipsilateral superior longitudinal fasciculus; 3) reduced axial diffusivity (AD) in the body of corpus callosum. Meanwhile, the alteration tendencies of FA, AD, and radial diffusivity (RD) in the forceps major (increased FA and AD, decreased RD) and forceps minor (decreased FA and AD, increased RD) were interestingly opposite. These results reveal extensive microstructural abnormalities of WM ranging from sensory modalities to other cross-modal pathways involving language, execution, memory, emotion, fine movement, and interhemispheric communication as well. This study provides novel evidence of large-scale subcortical involvement subsequent to prolonged loss of half visual inputs, which may be associated with developmental delay and compensatory plasticity.
Asunto(s)
Sustancia Blanca , Anisotropía , Ceguera , Encéfalo , Imagen de Difusión Tensora/métodos , HumanosRESUMEN
PURPOSE: To develop and validate a dual-energy CT (DECT)-based radiomics nomogram from multicenter trials for predicting the histological differentiation of head and neck squamous cell carcinoma (HNSCC). METHODS: A total of 178 patients (112 in the training and 66 in the validation cohorts) from eight institutions with histologically proven HNSCCs were included in this retrospective study. Radiomics-signature models were constructed from features extracted from virtual monoenergetic images (VMI) and iodine-based material decomposition images (IMDI), reconstructed from venous-phase DECT images. Clinical factors were also assessed to build a clinical model. Multivariate logistic regression analysis was used to develop a nomogram combining the radiomics signature models and clinical model for predicting poorly differentiated HNSCC and moderately well-differentiated HNSCC. The predictive performance of the clinical model, radiomics signature models, and nomogram was compared. The calibration degree of the nomogram was also assessed. RESULTS: The tumor location, VMI-signature, and IMDI-signature were associated with the degree of HNSCC differentiation, and areas under the ROC curves (AUCs) were 0.729, 0.890, and 0.833 in the training cohort and 0.627, 0.859, and 0.843 in the validation cohort, respectively. The nomogram incorporating tumor location and two radiomics-signature models yielded the best performance in training (AUC = 0.987) and validation (AUC = 0.968) cohorts with a good calibration degree. CONCLUSION: The nomogram that integrated the DECT-based radiomics-signature models and tumor location showed good performance in predicting histological differentiation degree of HNSCC, providing a novel combination for predicting HNSCC differentiation.
Asunto(s)
Neoplasias de Cabeza y Cuello , Nomogramas , Diferenciación Celular , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos XRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disease caused by lipid peroxidation and iron hemostasis of the brain. PPAR-α is regarded as the most encouraging therapeutic approach of several neurodegenerative and metabolic disorders, due to its potent regulatory effects. In this study, we examined the ameliorative effect and the mechanisms of a PPAR-α agonist, GW7647, on the established AD models using APP/PS1 mice and APPsw/SH-SY5Y cells. Through Aß quantification and behavioral test, we found that GW7647 reduced Aß burden and improved cognitive defect in APP/PS1 mice. Liquid chromatography-mass spectrometry analysis indicated that GW7647 could enter the brain after oral administration. Neuronal cell death and iron deposit were inhibited, accompanied by decreased lipid peroxidation and inflammation. In an in vitro study of APPsw cells, we found that PPAR-α directly bound with GPx4 intron3 to promote GPx4 transcription and reduced the iron transport capability. Our data suggested that activation of PPAR-α by GW7647 improved the disruption of iron homeostasis in the brain of APP/PS1 mice and alleviated neuronal inflammation and lipid peroxidation, which was possibly related to the upregulated transcription of GPx4 mediated by the interaction of GPx4 noncoding region and the PPAR-α.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Butiratos , Modelos Animales de Enfermedad , Hierro , Ratones , Ratones Transgénicos , Estrés Oxidativo , Receptores Activados del Proliferador del Peroxisoma , Compuestos de Fenilurea , Presenilina-1/metabolismoRESUMEN
The purpose of this study is to investigate brain functional changes in patients with intermittent exotropia (IXT) by analyzing the amplitude of low-frequency fluctuation (ALFF) of brain activity and functional connectivity (FC) using resting-state functional magnetic resonance imaging (rs-fMRI). There were 26 IXT patients and 22 age-, sex-, education-, and handedness-matched healthy controls (HCs) enrolled who underwent rs-fMRI. The ALFF, fractional ALFF (fALFF) values in the slow 4 and slow 5 bands, and FC values were calculated and compared. The correlations between ALFF/fALFF values in discrepant brain regions and clinical features were evaluated. Compared with HCs, ALFF/fALFF values were significantly increased in the right angular gyrus (ANG), supramarginal gyrus (SMG), inferior parietal lobule (IPL), precentral gyrus (PreCG), and the bilateral inferior frontal gyri (IFG), and decreased in the right precuneus gyrus (PCUN), left middle occipital gyrus (MOG), and postcentral gyrus (PoCG) in IXT patients. The Newcastle Control Test score was negatively correlated with ALFF values in the right IFG (r = -0.738, p < 0.001). The duration of IXT was negatively correlated with ALFF values in the right ANG (r = -0.457, p = 0.049). Widespread increases in FC were observed between brain regions, mainly including the right cuneus (CUN), left superior parietal lobule (SPL), right rolandic operculum (ROL), left middle temporal gyrus (MTG), left IFG, left median cingulate gyrus (DCG), left PoCG, right PreCG, and left paracentral gyrus (PCL) in patients with IXT. No decreased FC was observed. Patients with IXT exhibited aberrant intrinsic brain activities and FC in vision- and eye movement-related brain regions, which extend current understanding of the neuropathological mechanisms underlying visual and oculomotor impairments in IXT patients.
RESUMEN
The purpose of this study is to investigate characteristic alterations of functional connectivity (FC) patterns in the primary visual area (V1) in patients with intermittent exotropia (IXT) using resting-state functional magnetic resonance imaging (rs-fMRI) and how they relate to clinical features. Twenty-six IXT patients and 21 age-, sex-, handedness-, and education-matched healthy controls (HCs) underwent rs-fMRI. We performed FC analyses between bilateral V1 and other brain areas and compared FC strength between two groups. A Pearson correlation analysis was used to evaluate the correlation between the FC differences and clinical features. Compared with HCs, patients with IXT showed significantly lower FC of the right V1 with the right calcarine sulcus and right superior occipital gyrus, and the left V1 with right cuneus and right postcentral gyrus. The Newcastle Control Test score was positively correlated with mean FC values between the left inferior parietal lobule and bilateral V1, and between the left supramarginal gyrus and left V1. The duration of IXT was positively correlated with mean FC values between the right inferior occipital gyrus and right V1. Reduced FC between the V1 and various brain regions involved in vision and eye movement processes may be associated with the underlying neural mechanisms of impaired visual function in patients with IXT.
RESUMEN
BACKGROUND: Identification of the original site of sinonasal inverted papillomas (SIPs) is difficult but essential for reducing the recurrence rate. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide information about tissue perfusion and permeability to solve this problem. PURPOSE: To investigate the accuracy of DCE-MRI parameters in discriminating between regions of interest (ROIs) in the original site and peripheral portion. STUDY TYPE: Retrospective. POPULATION: Ninety consecutive patients with pathologically proven SIP. FIELD STRENGTH/SEQUENCE: 3.0T/DCE-MRI using fast-spoiled gradient recalled (FSPGR) T1 -weighted images with fat saturation. ASSESSMENT: ROIs were placed in the original site and the peripheral portion of SIP by two radiologists according to surgical records. Maximum slope of increase (MaxSlope), contrast-enhancement ratio (CER), bolus arrival time (BAT), initial area under the signal intensity-time curve (IAUGC), volume transfer constant (Ktrans ), volume of the extravascular extracellular space (ve ), and rate constant (Kep ) were calculated and repeated again with a month interval by a radiologist. STATISTICAL TESTS: Univariate and multivariate analysis was used to determine the best diagnostic parameters, and their performances in discrimination were evaluated by receiver operating characteristic (ROC) curves. Reproducibility was estimated by the intraclass correlation coefficient (ICC). RESULTS: MaxSlope, CER, IAUGC, Ktrans , and ve were significantly lower (P < 0.05) in the original site than the peripheral portion of SIPs. CER (odds ratio [OR] = 0.227, 95% confidence interval [95% CI] = 0.073-0.704) and ve (OR = 0.048, 95% CI = 0.004-0.527) were the best indicators for identifying the original ROIs. The combination of CER and ve had the best diagnostic performance in the discrimination between the ROIs (the area under the curve [AUC]: 0.937; 95% CI: 0.896-0.974). DATA CONCLUSION: DCE-MRI derived parameter values differed between the original site and the peripheral portion of SIPs. The model combining CER and ve appears to be able to accurately distinguish the original from peripheral ROIs. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.