Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(6): e0210322, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222606

RESUMEN

Lactococcus lactis and Lactococcus cremoris are Gram-positive lactic acid bacteria widely used as starter in milk fermentations. Lactococcal cells are covered with a polysaccharide pellicle (PSP) that was previously shown to act as the receptor for numerous bacteriophages of the Caudoviricetes class. Thus, mutant strains lacking PSP are phage resistant. However, because PSP is a key cell wall component, PSP-negative mutants exhibit dramatic alterations of cell shape and severe growth defects, which limit their technological value. In the present study, we isolated spontaneous mutants with improved growth, from L. cremoris PSP-negative mutants. These mutants grow at rates similar to the wild-type strain, and based on transmission electron microscopy analysis, they exhibit improved cell morphology compared to their parental PSP-negative mutants. In addition, the selected mutants maintain their phage resistance. Whole-genome sequencing of several such mutants showed that they carried a mutation in pbp2b, a gene encoding a penicillin-binding protein involved in peptidoglycan biosynthesis. Our results indicate that lowering or turning off PBP2b activity suppresses the requirement for PSP and ameliorates substantially bacterial fitness and morphology. IMPORTANCE Lactococcus lactis and Lactococcus cremoris are widely used in the dairy industry as a starter culture. As such, they are consistently challenged by bacteriophage infections which may result in reduced or failed milk acidification with associated economic losses. Bacteriophage infection starts with the recognition of a receptor at the cell surface, which was shown to be a cell wall polysaccharide (the polysaccharide pellicle [PSP]) for the majority of lactococcal phages. Lactococcal mutants devoid of PSP exhibit phage resistance but also reduced fitness, since their morphology and division are severely impaired. Here, we isolated spontaneous, food-grade non-PSP-producing L. cremoris mutants resistant to bacteriophage infection with a restored fitness. This study provides an approach to isolate non-GMO phage-resistant L. cremoris and L. lactis strains, which can be applied to strains with technological functionalities. Also, our results highlight for the first time the link between peptidoglycan and cell wall polysaccharide biosynthesis.


Asunto(s)
Bacteriófagos , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Peptidoglicano/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Polisacáridos/metabolismo , Mutación , Proteínas Portadoras/metabolismo
2.
FEMS Microbiol Lett ; 248(1): 101-9, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15963663

RESUMEN

Genome plasticity is considered as a means for bacteria to adapt to their environment. Plasticity in tandem repeat sequences on bacterial genomes has been recently exploited to trace the epidemiology of pathogens. Here, we examine the utility of minisatellite (i.e., a repeat unit of six nucleotides or more) typing in non-pathogenic food bacteria of the species Lactococcus lactis. Thirty-four minisatellites identified on the sequenced L. lactis ssp. lactis strain IL1403 genome were first analyzed in 10 closely related ssp. lactis strains, as determined by randomly amplified polymorphic DNA (RAPD). The selected tandem repeats varied in length, percent identity between repeats, and locations. We showed that: (i) the greatest polymorphism was in orfs encoding exported proteins or in intergenic regions; (ii) two thirds of minisatellites were little- or non-variable, despite as much as 90% identity between tandem repeats; and (iii) dendrograms based on either RAPD or minisatellite analyses were similar. Seven minisatellites identified in this study are potentially useful for lactococcal typing. We then asked whether tandem repeats in L. lactis were stable upon very long-term (up to two years) storage. Despite large rearrangements previously reported in derivative strains, just one of 10 minisatellites tested underwent an alteration, suggesting that tandem repeat rearrangements probably occur during active DNA replication. We conclude that multiple locus minisatellite analysis can be a valuable tool to follow lactococcal strain diversity.


Asunto(s)
Lactococcus lactis/clasificación , Repeticiones de Minisatélite/genética , Polimorfismo Genético , Secuencias Repetidas en Tándem/genética , Lactococcus lactis/genética , Técnica del ADN Polimorfo Amplificado Aleatorio
3.
Int J Food Microbiol ; 97(2): 197-207, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15541806

RESUMEN

Real-time quantitative PCR assays were developed for the absolute quantification of lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus delbrueckii, L. casei, L. paracasei, L. rhamnosus, L. acidophilus and L. johnsonii) in fermented milk products. The results of molecular quantification and classic bacterial enumeration did not differ significantly with respect to S. thermophilus and the species of the L. casei group which were detected in the six commercial fermented products tested, thus showing that DNA extraction was efficient and that genomic DNA solutions were free of PCR inhibitors. For L. delbrueckii, the results of bacterial enumeration were generally lower by a factor 10 to 100 than those of PCR quantification, suggesting a loss of viability during storage of the dairy products at 1-8 degrees C for most of the strains in this species. Real-time quantitative assays enabled identification of the species of lactic acid bacterial strains initially present in commercial fermented milk products and their accurate quantification with a detection threshold of 10(3) cells per ml of product.


Asunto(s)
Productos Lácteos Cultivados/microbiología , ADN Bacteriano/análisis , Lactobacillus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Streptococcus thermophilus/aislamiento & purificación , Secuencia de Bases , Recuento de Colonia Microbiana , Cartilla de ADN , Microbiología de Alimentos , Lactobacillus/clasificación , ARN Ribosómico 16S/análisis , Sensibilidad y Especificidad , Especificidad de la Especie , Streptococcus thermophilus/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...