Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 20(9): 1508-1520, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210826

RESUMEN

Advanced peritoneal carcinomatosis including high-grade ovarian cancer has poor prognoses and a poor response rate to current checkpoint inhibitor immunotherapies; thus, there is an unmet need for effective therapeutics that would provide benefit to these patients. Here we present the preclinical development of SENTI-101, a cell preparation of bone marrow-derived mesenchymal stromal (also known as stem) cells (MSC), which are engineered to express two potent immune-modulatory cytokines, IL12 and IL21. Intraperitoneal administration of SENTI-101 results in selective tumor-homing and localized and sustained cytokine production in murine models of peritoneal cancer. SENTI-101 has extended half-life, reduced systemic distribution, and improved antitumor activity when compared with recombinant cytokines, suggesting that it is more effective and has lower risk of systemic immunotoxicities. Treatment of tumor-bearing immune-competent mice with a murine surrogate of SENTI-101 (mSENTI-101) results in a potent and localized immune response consistent with increased number and activation of antigen presenting cells, T cells and B cells, which leads to antitumor response and memory-induced long-term immunity. Consistent with this mechanism of action, co-administration of mSENTI-101 with checkpoint inhibitors leads to synergistic improvement in antitumor response. Collectively, these data warrant potential clinical development of SENTI-101 for patients with peritoneal carcinomatosis and high-grade ovarian cancer.Graphical abstract: SENTI-101 schematic and mechanism of actionSENTI-101 is a novel cell-based immunotherapeutic consisting of bone marrow-derived mesenchymal stromal cells (BM-MSC) engineered to express IL12 and IL21 intended for the treatment of peritoneal carcinomatosis including high-grade serous ovarian cancer. Upon intraperitoneal administration, SENTI-101 homes to peritoneal solid tumors and secretes IL12 and IL21 in a localized and sustained fashion. The expression of these two potent cytokines drives tumor infiltration and engagement of multiple components of the immune system: antigen-presenting cells, T cells, and B cells, resulting in durable antitumor immunity in preclinical models of cancer.


Asunto(s)
Interleucina-12/metabolismo , Interleucinas/metabolismo , Melanoma Experimental/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Neoplasias/inmunología , Neoplasias Peritoneales/inmunología , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Am J Physiol Renal Physiol ; 320(1): F133-F144, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283643

RESUMEN

The majority of patients with chronic kidney disease (CKD) receiving dialysis do not achieve target serum phosphorus concentrations, despite treatment with phosphate binders. Tenapanor is a nonbinder, sodium/hydrogen exchanger isoform 3 (NHE3) inhibitor that reduces paracellular intestinal phosphate absorption. This preclinical study evaluated the effect of tenapanor and varying doses of sevelamer carbonate on urinary phosphorus excretion, a direct reflection of intestinal phosphate absorption. We measured 24-h urinary phosphorus excretion in male rats assigned to groups dosed orally with vehicle or tenapanor (0.3 mg/kg/day) and provided a diet containing varying amounts of sevelamer [0-3% (wt/wt)]. We also evaluated the effect of the addition of tenapanor or vehicle on 24-h urinary phosphorus excretion to rats on a stable dose of sevelamer [1.5% (wt/wt)]. When administered together, tenapanor and sevelamer decreased urinary phosphorus excretion significantly more than either tenapanor or sevelamer alone across all sevelamer dose levels. The Bliss statistical model of independence indicated that the combination was synergistic. A stable sevelamer dose [1.5% (wt/wt)] reduced mean ± SE urinary phosphorus excretion by 42 ± 3% compared with vehicle; together, tenapanor and sevelamer reduced residual urinary phosphorus excretion by an additional 37 ± 6% (P < 0.05). Although both tenapanor and sevelamer reduce intestinal phosphate absorption individually, administration of tenapanor and sevelamer together results in more pronounced reductions in intestinal phosphate absorption than if either agent is administered alone. Further evaluation of combination tenapanor plus phosphate binder treatment in patients receiving dialysis with hyperphosphatemia is warranted.


Asunto(s)
Quelantes/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Isoquinolinas/farmacología , Riñón/efectos de los fármacos , Fósforo/orina , Eliminación Renal/efectos de los fármacos , Sevelamer/farmacología , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Sinergismo Farmacológico , Humanos , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Masculino , Ratas Sprague-Dawley , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Factores de Tiempo
3.
Eur J Neurosci ; 48(8): 2857-2868, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29528521

RESUMEN

Cortico-basal ganglia-thalamic (CBT) ß oscillations (15-30 Hz) are elevated in Parkinson's disease and correlated with movement disability. To date, no experimental paradigm outside of loss of dopamine has been able to specifically elevate ß oscillations in the CBT loop. Here, we show that activation of striatal cholinergic receptors selectively increased ß oscillations in mouse striatum and motor cortex. In individuals showing simultaneous ß increases in both striatum and M1, ß partial directed coherence (PDC) increased from striatum to M1 (but not in the reverse direction). In individuals that did not show simultaneous ß increases, ß PDC increased from M1 to striatum (but not in the reverse direction), and M1 was characterized by persistent ß-high frequency oscillation phase-amplitude coupling. Finally, the direction of ß PDC distinguished between ß sub-bands. This suggests that (1) striatal cholinergic tone exerts state-dependent and frequency-selective control over CBT ß power and coordination; (2) ongoing rhythmic dynamics can determine whether elevated ß oscillations are expressed in striatum and M1; and (3) altered striatal cholinergic tone differentially modulates distinct ß sub-bands.


Asunto(s)
Ritmo beta/fisiología , Cuerpo Estriado/metabolismo , Corteza Motora/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Ritmo beta/efectos de los fármacos , Agonistas Colinérgicos/farmacología , Cuerpo Estriado/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...