RESUMEN
In this work, using a conventional magnetron sputtering system, Al-doped ZnO (AZO) films with (112Ì0) and (0002) preferential orientations were grown on r-sapphire and a-sapphire substrates, respectively. The effect of substrate and deposition temperature on the growth of AZO films and their preferential orientations were investigated. The crystallographic characteristics of AZO films were characterized by X-ray diffraction (XRD). The surface morphology of AZO films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It is found that the lattice mismatch between AZO and substrate determines the growth of AZO films and their preferential orientations. The thermoelectric properties are strongly dependent on the crystal grain shape and the grain boundaries induced by the preferred orientation. The highly connected and elongated grains lead to high thermoelectric properties. The in-plane anisotropy performances of thermoelectric characteristics were found in the (112Ì0) preferential oriented ZnO films. The in-plane power factor of the (112Ì0) preferential oriented ZnO films in the [0001] direction was more than 1.5 × 10-3 W m-1 K-2 at 573 K, which is larger than that of the (0002) preferential oriented ZnO films.
RESUMEN
A multilayer structure of TeO2/interdigital transducers (IDTs)/ZnO(112¯0)/Si(100) was proposed and investigated to achieve both high sensitivity and temperature-stability for bio-sensing applications. Dispersions of phase velocities, electromechanical coupling coefficients K2, temperature coefficient of delay (TCD) and sensitivity in the multilayer structures were simulated as functions of normalized thicknesses of ZnO (hZnO/λ) and TeO2 (hTeO2/λ) films. The fundamental mode of Love mode (LM) - surface acoustic wave (SAW) shows a larger value of K2 and higher sensitivity compared with those of the first mode. TeO2 film with a positive TCD not only compensates the temperature effect induced due to the negative TCD of ZnO(112¯0)/Si(100), but also enhances the sensitivity of the love mode device. The optimal normalized thickness ratios were identified to be hTeO2/λ=0.021 and hZnO/λ=0.304, and the devices with such structures can which generate a normalized sensitivity of -1.04×10-3m3/kg, a TCD of 0.009ppm/°C, and a K2 value of 2.76%.