RESUMEN
Although the SARS-CoV-2 pandemic has ended, multiple sporadic cases still exist, posing a request for more antivirals. The main protease (Mpro) of SARS-CoV-2, a key enzyme for viral replication, is an attractive target for drug development. Here, we report the discovery of a new potent α-ketoamide-containing Mpro inhibitor, N-((R)-1-cyclohexyl-2-(((R)-3-methoxy-1-oxo-1-((1-(2-oxo-2-((thiazol-2-ylmethyl)amino)acetyl)cyclobutyl)amino)propan-2-yl)amino)-2-oxoethyl)-4,4-difluorocyclohexane-1-carboxamide (20j). This compound presented promising enzymatic inhibitory activity against SARS-CoV-2 Mpro with an IC50 value of 19.0 nM, and an excellent antiviral activity in cell-based assay with an EC50 value of 138.1 nM. This novel covalent inhibitor may be used as a lead compound for subsequent drug discovery against SARS-CoV-2.
Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Humanos , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento MolecularRESUMEN
The SARS-CoV-2 main protease (Mpro, also named 3CLpro) is a promising antiviral target against COVID-19 due to its functional importance in viral replication and transcription. Herein, we report the discovery of a series of α-ketoamide derivatives as a new class of SARS-CoV-2 Mpro inhibitors. Structure-activity relationship (SAR) of these compounds was analyzed, which led to the identification of a potent Mpro inhibitor (27h) with an IC50 value of 10.9 nM. The crystal structure of Mpro in complex with 27h revealed that α-ketoamide warhead covalently bound to Cys145s of the protease. In an in vitro antiviral assay, 27h showed excellent activity with an EC50 value of 43.6 nM, comparable to the positive control, Nirmatrelvir. This compound displayed high target specificity for Mpro against human proteases and low toxicity. It also possesses favorable pharmacokinetic properties. Overall, compound 27h could be a promising lead compound for drug discovery targeting SARS-CoV-2 Mpro and deserves further in-depth studies.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química , Relación Estructura-Actividad , Simulación del Acoplamiento MolecularRESUMEN
Emerging SARS-CoV-2 variants, particularly the Omicron variant and its sublineages, continually threaten the global public health. Small molecule antivirals are an effective treatment strategy to fight against the virus. However, the first-generation antivirals either show limited clinical efficacy and/or have some defects in pharmacokinetic (PK) properties. Moreover, with increased use of these drugs across the globe, they face great pressure of drug resistance. We herein present the discovery and characterization of a new generation antiviral drug candidate (SY110), which is a potent and selective inhibitor of SARS-CoV-2 main protease (Mpro). This compound displayed potent in vitro antiviral activity against not only the predominant SARS-CoV-2 Omicron sublineage BA.5, but also other highly pathogenic human coronaviruses including SARS-CoV-1 and MERS-CoV. In the Omicron-infected K18-hACE2 mouse model, oral treatment with SY110 significantly lowered the viral burdens in lung and alleviated the virus-induced pathology. Importantly, SY110 possesses favorable PK properties with high oral drug exposure and oral bioavailability, and also an outstanding safety profile. Furthermore, SY110 exhibited sensitivity to several drug-resistance Mpro mutations. Collectively, this investigation provides a promising new drug candidate against Omicron and other variants of SARS-CoV-2.
Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Animales , Humanos , Ratones , Administración Oral , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19/métodos , Proteasas 3C de Coronavirus/antagonistas & inhibidoresRESUMEN
Emerging SARS-CoV-2 variants continue to cause waves of new infections globally. Developing effective antivirals against SARS-CoV-2 and its variants is an urgent task. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target because of its central role in viral replication and its conservation among variants. We herein report a series of potent α-ketoamide-containing Mpro inhibitors obtained using the Ugi four-component reaction. The prioritized compound, Y180, showed an IC50 of 8.1 nM against SARS-CoV-2 Mpro and had oral bioavailability of 92.9%, 31.9% and 85.7% in mice, rats and dogs, respectively. Y180 protected against wild-type SARS-CoV-2, B.1.1.7 (Alpha), B.1.617.1 (Kappa) and P.3 (Theta), with EC50 of 11.4, 20.3, 34.4 and 23.7 nM, respectively. Oral treatment with Y180 displayed a remarkable antiviral potency and substantially ameliorated the virus-induced tissue damage in both nasal turbinate and lung of B.1.1.7-infected K18-human ACE2 (K18-hACE2) transgenic mice. Therapeutic treatment with Y180 improved the survival of mice from 0 to 44.4% (P = 0.0086) upon B.1.617.1 infection in the lethal infection model. Importantly, Y180 was also highly effective against the B.1.1.529 (Omicron) variant both in vitro and in vivo. Overall, our study provides a promising lead compound for oral drug development against SARS-CoV-2.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Perros , Humanos , Ratones , RatasRESUMEN
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.
Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Animales , Antivirales/química , Antivirales/uso terapéutico , COVID-19/patología , COVID-19/virología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Modelos Animales de Enfermedad , Diseño de Fármacos , Humanos , Interferón beta/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Transgénicos , Oligopéptidos , Prolina/análogos & derivados , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/toxicidad , Ratas , Ratas Sprague-Dawley , Carga Viral/efectos de los fármacos , Replicación ViralRESUMEN
An unprecedented [4 + 2] annulation reaction between in situ formed azoalkenes and azlactones has been developed. This reaction provides a facile access to an array of 4,5-dihydropyridazin-3(2H)-one derivatives, which are very promising in medicinal applications as potential biologically active candidates. Notably, these dihydropyridazinones could also be synthesized via a one-pot reaction protocol by using the in situ formed azlactones from N-acyl amino acids and in situ generated azoalkenes from α-halogeno hydrazones. The potential applications of the methodology were also demonstrated by gram-scale experiments and the versatile conversions of the products into other nitrogen-containing compounds.
RESUMEN
A catalyst-free and controllable reaction of isatin-derived para-quinone methides with sulfur ylides was developed. This protocol enables the divergent synthesis of two different valuable oxindole derivatives with a broad substrate scope and high stereoselectivities (up to >20 : 1 dr and only the (Z)-configuration).
RESUMEN
Two new types of cyclic pyridinium ylides were designed and further used in reactions with azoalkenes to access structurally diverse spirocyclic compounds. A range of spiropyrazoline oxindoles could be smoothly obtained in up to 99% yield via a [4 + 1] annulation process with oxindole 3-pyridinium ylides as C1 synthons. Similarly, a series of spiropyrazoline indanones could be prepared with indanone 2-pyridinium ylides as C1 synthons. This work represents the first example of cyclic pyridinium ylides as C1 synthons for the efficient construction of spirocyclic compounds.