Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757190

RESUMEN

Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.

2.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580030

RESUMEN

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Asunto(s)
Antibacterianos , Doxiciclina , Nanopartículas , Agujas , Polilisina , Polilisina/química , Doxiciclina/administración & dosificación , Doxiciclina/farmacología , Doxiciclina/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Ratones , Sistemas de Liberación de Medicamentos , Administración Cutánea , Piel/efectos de los fármacos , Piel/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico
3.
Pharmaceutics ; 16(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399340

RESUMEN

Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. Among various types of microneedles, nanoparticle-loaded dissolving microneedles (DMNs) present a unique combination of advantages, leveraging the strengths of DMNs (high payload, good mechanical properties, and easy fabrication) and nanocarriers (satisfactory solubilization capacity and a controlled release profile). Consequently, they hold considerable clinical application potential in the precision medicine era. Despite this promise, no nanoparticle-loaded DMN products have been approved thus far. The lack of understanding regarding their in vivo fate represents a critical bottleneck impeding the clinical translation of relevant products. This review aims to elucidate the current research status of the in vivo fate of nanoparticle-loaded DMNs and elaborate the necessity to investigate the in vivo fate of nanoparticle-loaded DMNs from diverse aspects. Furthermore, it offers insights into potential entry points for research into the in vivo fate of nanoparticle-loaded DMNs, aiming to foster further advancements in this field.

4.
J Control Release ; 367: 1-12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244844

RESUMEN

Immunogenic cell death (ICD) is associated with the release of damage-associated molecular patterns, including ATP, to promote an effective immune cycle against tumors. However, tumors have evolved an effective strategy for degrading extracellular immunostimulatory ATP via the ATP-adenosine axis, allowing the sequential action of the ectonucleotidases CD39 to degrade accumulated immunostimulatory ATP into pleiotropic immunosuppressive adenosine. Here, an ingenious dissolving microneedle patch (DMNs) is designed for the intralesional delivery of CD39 inhibitor (sodium polyoxotungstate, POM-1) and ICD inducer (IR780) co-encapsulated solid lipid nanoparticles (P/I SLNs) for antitumor therapy. Upon insertion into the tumor site, IR780 induces ICD modalities with the release of damage-associated molecular patterns from endogenous tissues, which activates the antitumor immune cycle. Simultaneously, POM-1 promotes the liberation of immunostimulatory ATP and lowers the level of immunosuppressive extracellular adenosine, which supported immune control of tumors via recruiting CD39-expressing immune cells. In vivo antitumor studies prove that this platform can effectively eliminate mice melanoma (tumor growth inhibitory rate of 96.5%) and colorectal adenocarcinoma (tumor growth inhibitory rate of 93.5%). Our results shed light on the immunological aspects of combinatorial phototherapy and ATP-adenosine regulation, which will broaden the scope of synergistic antitumor immunotherapy.


Asunto(s)
Adenosina , Neoplasias , Animales , Ratones , Fototerapia/métodos , Neoplasias/terapia , Adenosina Trifosfato/metabolismo , Inmunoterapia , Línea Celular Tumoral
5.
Pharmaceutics ; 15(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37765174

RESUMEN

Superparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as theranostic nanoparticles to increase transverse (T2) relaxivity and enhance contrast in magnetic resonance imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment. Consequently, it could self-assemble into shell-crosslinked micelles with enhanced colloidal stability in bloodstream circulation. Notably, PCPZL could effectively load SPIO nanocrystals with a high loading capacity of 66.0 ± 0.9%, forming SPIO nanoclusters with a diameter of approximately 100 nm, a high cluster density, and an impressive T2 relaxivity value 5.5 times higher than that of Resovist®. In vivo MRI measurements highlighted the rapid accumulation and contrast effects of SPIO-loaded PCPZL micelles in the livers of both healthy mice and nude mice with an orthotopic hepatocellular carcinoma tumor model. Moreover, the magnetic micelles remarkably enhanced the relative MRI signal difference between the tumor and normal liver tissues. Overall, our findings demonstrate that PCPZL significantly improves the stability and magnetic properties of SPIO nanocrystals, making SPIO-loaded PCPZL micelles promising MRI contrast agents for diagnosing liver diseases and cancers.

6.
J Control Release ; 357: 641-654, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084892

RESUMEN

Despite vaccination having the potency to revolutionize disease treatments, some critical issues including lack of safe and effective delivery system, insufficient internalization and ineffective antigen cross-presentation by dendritic cells (DCs) severely hamper its extensive clinical applications. Herein, we developed a whole cell-encapsulated antitumor vaccine microneedle patch (TCV-DMNs) potentiated with transdermal co-delivery of granulocyte-macrophage colony-stimulating factor (GM-CSF) and autophagy promoter (Tat-beclin 1). After transdermal vaccination with TCV-DMNs, GM-CSF released from DMNs serves as a potent adjuvant to recruit and promote the phagocytosis of antigens by DCs. Subsequently, Tat-beclin 1 promoted DCs maturation and MHC-I-mediated cross-presentation via up-regulated autophagy of DCs. We found that vaccination with TCV-DMNs could not only effectively suppress melanoma challenge, but also lead to regression of established malignancies, followed by a relapse-free survival of >40 days. Collectively, whole cell-encapsulated microneedle-assisted transdermal vaccination TCV-DMNs in combination with autophagy regulation could induce a robust antitumor immune response via enhancing transdermal delivery efficiency, promoting antigen internalization and cross-presentation, together with boosting T cell activities.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Células Dendríticas , Beclina-1 , Vacunación , Inmunoterapia , Neoplasias/tratamiento farmacológico , Antígenos , Autofagia
7.
Pharmaceutics ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678798

RESUMEN

Integrating dissolving microneedles (DMNs) and nanocarriers (NC) holds great potential in transdermal drug delivery because it can simultaneously overcome the stratum corneum barrier and achieve efficient and controlled drug delivery. However, different skin sites with different thicknesses and compositions can affect the transdermal diffusion of NC-loaded DMNs. There are few reports on the biological fate (especially transdermal diffusion) of NC-loaded DMNs, and inaccurate bioimaging information of intact NC limits the accurate understanding of the in vivo fate of NC-loaded DMNs. The aggregation-caused quenching (ACQ) probes P4 emitted intense fluorescence signals in intact NC while quenched after the degradation of NC, had been demonstrated the feasibility of label intact NC. In this study, P4 was loaded in solid lipid nanoparticles (SLNs), and further encapsulated into DMNs, to track the transdermal diffusion of SLNs delivered at different skin sites. The results showed that SLNs had excellent stability after being loaded into DMNs with no significant changes in morphology and fluorescence properties. The in vivo live and ex vivo imaging showed that the transdermal diffusion rate of NC-loaded DMNs was positively correlated with skin thickness, with the order ear > abdomen > back. In conclusion, this study confirmed the site-dependency of transdermal diffusion in NC-loaded DMNs.

8.
J Colloid Interface Sci ; 628(Pt B): 189-203, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35994900

RESUMEN

HYPOTHESIS: Chemodynamic therapy (CDT) can efficiently kill cancer cells by producing hydroxyl radical (•OH), a kind of high-toxic reactive oxygen species (ROS), via Fenton or Fenton-like reactions. This study involved a versatile nanomedicine, MSN@DOX/GA-Fe/PDA (M@DGP), delivered via microneedles, which was expected to combine chemodynamic/photothermal/chemotherapy and efficiently increase ROS accumulation to achieve significant therapeutic efficacy against melanoma. EXPERIMENTS: The composition of the synthesized nanoparticles was confirmed by a series of characterizations including transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential. The photothermal properties of the nanomedicine was evaluated via infrared imaging, and •OH-producing ability was evaluated by UV-Vis and electron spin resonance. The mechanisms of ROS accumulation were studied in B16 cells by detecting intracellular •OH, glutathione, and ROS levels. The drug-loaded microneedles (M@DGP-MNs) were prepared, and their morphology and mechanical strength were characterized. The in vivo antimelanoma effect and biosafety evaluation of the nanomedicine were investigated in tumor-bearing C57 mice. FINDINGS: M@DGP was successfully prepared and could achieve ROS accumulation through a photothermal-enhanced Fenton reaction, polydopamine-induced glutathione consumption, and doxorubicin-mediated mitochondrial dysfunction which induced oxidative stress and apoptosis of tumor cells. M@DGP-MNs showed superior antitumor efficacy and good biosafety, providing a promising strategy for melanoma treatment.


Asunto(s)
Melanoma , Nanopartículas , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/química , Glutatión , Radical Hidroxilo , Nanomedicina , Nanopartículas/química , Neoplasias/patología , Especies Reactivas de Oxígeno
9.
Acta Pharm Sin B ; 12(4): 2074-2088, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847508

RESUMEN

The therapeutic efficacy of cisplatin has been restricted by drug resistance of cancers. Intracellular glutathione (GSH) detoxification of cisplatin under the catalysis of glutathione S-transferases (GST) plays important roles in the development of cisplatin resistance. Herein, a strategy of "pincer movement" based on simultaneous GSH depletion and GST inhibition is proposed to enhance cisplatin-based chemotherapy. Specifically, a redox-responsive nanomedicine based on disulfide-bridged degradable organosilica hybrid nanoparticles is developed and loaded with cisplatin and ethacrynic acid (EA), a GST inhibitor. Responding to high level of intracellular GSH, the hybrid nanoparticles can be gradually degraded due to the break of disulfide bonds, which further promotes drug release. Meanwhile, the disulfide-mediated GSH depletion and EA-induced GST inhibition cooperatively prevent cellular detoxification of cisplatin and reverse drug resistance. Moreover, the nanomedicine is integrated into microneedles for intralesional drug delivery against cisplatin-resistant melanoma. The in vivo results show that the nanomedicine-loaded microneedles can achieve significant GSH depletion, GST inhibition, and consequent tumor growth suppression. Overall, this research provides a promising strategy for the construction of new-type nanomedicines to overcome cisplatin resistance, which extends the biomedical application of organosilica hybrid nanomaterials and enables more efficient chemotherapy against drug-resistant cancers.

10.
Acta Biomater ; 148: 106-118, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671875

RESUMEN

Focal bacterial infections are often difficult to treat due to the rapid emergence of antibiotic-resistant bacteria, high risk of relapse, and severe inflammation at local lesions. To address multidrug-resistant skin and soft tissue infections, a bacteria-absorbing sponge was prepared to involve a "trap-and-kill" mechanism. The system describes a guanidinium-rich lipopeptide functionalized lyotropic liquid-crystalline hydrogel with bicontinuous cubic networks. Amphiphilic lipopeptides can be spontaneously anchored to the lipid-water interface, exposing their bacterial targeting sequences to enhance antibacterial trapping/killing activity. Computational simulations supported our structural predictions, and the sponge was confirmed to successfully remove ∼98.8% of the bacteria in the medium. Release and degradation behavior studies indicated that the bacteria-absorbing sponge could degrade, mediate enzyme-responsive lipopeptide release, or generate ∼200 nm lipopeptide nanoparticles with environmental erosion. This implies that the sponge can effectively capture and isolate high concentrations of bacteria at the infected site and then sustainably release antimicrobial lipopeptides into deep tissues for the eradication of residual bacteria. In the animal experiment, we found that the antibacterial performance of the bacterial-absorbing sponge was significant, which demonstrated not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also a unique advantage to protect tissue from bacterial attack. STATEMENT OF SIGNIFICANCE: Host defense peptides/peptidomimetics (HDPs) have shown potential for the elimination of focal bacterial infections, but the application of their topical formulations suffers from time-consuming preparation processes, indistinctive toxicity reduction effects, and inefficient bacterial capture ability. To explore new avenues for the development of easily prepared, low-toxicity and high-efficiency topical antimicrobials, a guanidinium-rich lipopeptide was encapsulated in a lyotropic liquid-crystalline hydrogel (denoted as "bacteria-absorbing sponge") to achieve complementary superiorities. The superior characteristic of the bacteria-absorbing sponge involves a "trap-and-kill" mechanism, which undergoes not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also effective bacterial capture and isolating action to confine bacterial diffusion and protect tissues from bacterial attack.


Asunto(s)
Infecciones Bacterianas , Lipopéptidos , Animales , Antibacterianos/farmacología , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/prevención & control , Guanidina/farmacología , Hidrogeles/farmacología , Lipopéptidos/química , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana
11.
Acta Biomater ; 142: 113-123, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35189382

RESUMEN

With the increased emergence and threat of multi-drug resistant microorganisms, MXenes have become not only an emerging class of two-dimensional functional nanomaterials, but also potential nanomedicines (i.e., antimicrobial agents) that deserve further exploration. Very recently, Ti3C2 MXene was observed to offer a unique membrane-disruption effect and superior light-to-heat conversion efficiency, but its antibacterial property remains unsatisfactory due to poor MXene-bacteria interactions, low photothermal therapy efficiency, and occurrence of bacterial rebound in vivo. Herein, the cationic antibiotic ciprofloxacin (Cip) is combined with Ti3C2 MXene, and a hybrid hydrogel was constructed by incorporating Cip-Ti3C2 nanocomposites into the network structure of a Cip-loaded hydrogels to effectively trap and kill bacteria. We found that the Cip-Ti3C2 nanocomposites achieved an impressive in vitro bactericidal efficiency of >99.99999% (7.03 log10) for the inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by combining chemotherapy with photothermal therapy. In an MRSA-induced murine abscess model, the hybrid hydrogel simultaneously achieved high-efficiency sterilization and long-term inhibition effects, avoiding the rebound of bacteria after photothermal therapy, and thus maximized the in vivo therapeutic efficacy of Ti3C2 MXene-based systems. Overall, this work provides a strategy for efficiently combating localized bacterial infection by rationally designing MXene-based hybrid hydrogels. STATEMENT OF SIGNIFICANCE: Two-dimensional Ti3C2 MXene was recently regarded as a promising functional nanomaterial, however, its antibacterial applications are limited by the poor MXene-bacteria interactions, low photothermal therapy efficiency, and the occurrence of bacterial rebound in vivo. This work aims to construct a Ti3C2 MXene-based hybrid hydrogel for chemo-photothermal therapy and enhance the antimicrobial performance via a combination of the high-efficiency sterilization of ciprofloxacin-Ti3C2 nanocomposites with the long-term inhibition effect of ciprofloxacin hydrogel. The present study provides an example of efficient MXene-based antimicrobials to treat localized bacterial infection such as methicillin-resistant Staphylococcus aureus (MRSA)-induced skin abscess.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Absceso , Animales , Antibacterianos/farmacología , Bacterias , Ciprofloxacina/farmacología , Hidrogeles/farmacología , Ratones , Titanio/farmacología
12.
Adv Healthc Mater ; 11(10): e2101846, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114076

RESUMEN

Black phosphorus (BP) nanosheets emerged as promising 2D nanomaterial that have been applied to eradicate antibiotic-resistant bacteria. However, their applications are limited by intrinsic ambient instability. Here, the ε-poly-l-lysine (ε-PL)-engineered BP nanosheets are constructed via simple electrostatic interaction to cater the demand for passivating BP with amplified antibacterial activity. The dual drug-delivery complex named BP@ε-PL can closely anchor onto the surface of bacteria, leading to membrane disintegration. Subsequently, in situ hyperthermia generated by BP under near-infrared (NIR) irradiation can precisely eradicate pathogenic bacteria. In vitro antibacterial studies verify the rapid disinfection ability of BP@ε-PL against Methicillin-resistant Staphylococcus aureus (MRSA) within 15 min. Moreover, ε-PL can serve as an effective protector to avoid chemical degradation of bare BP. The in vivo antibacterial study shows that a 99.4% antibacterial rate in a MRSA skin infection model is achieved, which is accompanied by negligible toxicity. In conclusion, this work not merely provides a new conjecture for protecting the BP, but also opens a novel window for synergistic antibiotic-resistant bacteria therapy based on antimicrobial peptides and 2D photothermal nanomaterial.


Asunto(s)
Hipertermia Inducida , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Péptidos Antimicrobianos , Fósforo
13.
Eur J Pharm Biopharm ; 172: 177-192, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35202797

RESUMEN

Cryptotanshinone (CTS) is a promising therapeutic option for pulmonary fibrosis (PF). However, clinical applications of CTS are limited owing to high photosensitivity and poor oral bioavailability. Pulmonary drug delivery, especially sustained pulmonary drug delivery, is promising for local treatment of chronic lung diseases. In this study, CTS was encapsulated in an optimized chitosan/L-leucine-based swellable microparticles (SMs) system, which exhibited an appropriate aerosolization performance, sustained release and storage stability. SMs enhanced the in vitro anti-fibrosis efficacy of CTS as shown by the improved cellular uptake. The effect of PF status on in vivo fate of the pulmonary delivered drug was also assessed. Pharmacokinetics and tissue distribution of oral and pulmonary delivery CTS in bleomycin-induced PF rats were compared. Pulmonary delivery exhibited high drug concentrations in pulmonary lesion areas, with reduced exposure to blood and non-targeted tissues after administration at a significantly lower dose compared with oral delivery. Moreover, PF pathological status enhanced activity of SMs, implying that pulmonary delivery was highly effective for PF treatment. Compared to oral delivery, Inhaled SMs showed comparable or even better efficacies at approximately 60-fold low dose compared with oral delivery. A sustained efficacy was observed under a prolonged administration interval (corresponding to half the total dose). Inhalation safety of SMs was established, and important mechanism-related signaling pathways against PF were investigated in vitro and in vivo. In summary, the findings showed that the developed CTS-loaded sustained pulmonary delivery system is a safe and effective strategy for chronic PF treatment.


Asunto(s)
Fenantrenos , Fibrosis Pulmonar , Factor de Transcripción STAT3 , Sirtuina 3 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Administración por Inhalación , Animales , Bleomicina , Fenantrenos/administración & dosificación , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuinas/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
14.
Mater Sci Eng C Mater Biol Appl ; 131: 112494, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857280

RESUMEN

Cellular defense system represented by glutathione (GSH) greatly weakens the outcomes of cancer therapy by antioxidation and detoxification. GSH depletion has been proved to be an effective way to enhance the efficacy of reactive oxygen species (ROS)-based therapies and chemotherapy. However, the existing strategies of GSH depletion still face the problems of unclear biosafety and high complexity of multicomponent co-delivery. In this study, we developed a GSH-depleting carrier platform based on disulfide-bridged mesoporous organosilica nanoparticles (MONs) to destroy the cellular defense system for cancer therapy. Responding to the high level of GSH in cancer cells, the disulfide bonds in the framework of MONs could be broken and consumed substantial GSH at the same time. Moreover, this process also promoted the degradation of MONs. In order to evaluate the effect of this platform in cancer therapy, chemotherapeutic drug cisplatin was loaded into MONs (Pt@MONs) to treat drug-resistant non-small cell lung cancer. In vitro and in vivo results indicated that Pt@MONs efficiently triggered GSH depletion, promoted platinum-DNA adduct formation, and induced cell apoptosis, resulting in significant tumor growth inhibition without marked toxicity. Taken together, the cellular defense system-destroying nanoparticles provide a promising platform for enhanced cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Doxorrubicina , Portadores de Fármacos , Glutatión , Humanos
15.
Biomater Sci ; 9(23): 8051, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34724698

RESUMEN

Correction for 'Microneedle-mediated delivery of MIL-100(Fe) as a tumor microenvironment-responsive biodegradable nanoplatform for O2-evolving chemophototherapy' by Sulan Luo et al., Biomater. Sci., 2021, DOI: 10.1039/d1bm00888a.

16.
J Control Release ; 339: 335-349, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34606937

RESUMEN

Starvation therapy based on glucose oxidase (GOx) has attracted considerable attention in tumor treatment. However, several shortcomings severely hinder its further applications, including limited therapeutic efficacy, poor enzyme stability, and potential side effects. Herein, a strategy of cascade reaction-enhanced combined therapy based on the oxygen-evolving multifunctional nanoreactors is proposed for tumor therapy. The GOx and catalase (CAT) are immobilized in metal-organic frameworks by biomimetic mineralization to improve their stability via spatial confinement. The GOx can consume glucose, reduce ATP levels, and down-regulate the expression of heat shock proteins, which consequently sensitize tumor cells to indocyanine green-based photothermal therapy. Furthermore, the hydrogen peroxide generated by GOx as well as overexpressed in tumor can be decomposed by CAT and continuously generate oxygen, which further enhance the efficacy of oxygen-dependent starvation therapy and photodynamic therapy. The nanoreactors are directly delivered to the superficial tumor by microneedles, achieving efficient tumor accumulation and dramatically strengthened antitumor efficacy without obvious side effects, which provides a valuable paradigm for the application of cascade reaction-based combined therapy.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Glucosa Oxidasa , Humanos , Peróxido de Hidrógeno , Nanotecnología , Neoplasias/tratamiento farmacológico
17.
ACS Appl Mater Interfaces ; 13(41): 48433-48448, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34613687

RESUMEN

The excessive colonization of Propionibacterium acnes (P. acnes) is responsible for the genesis of acne vulgaris, a common inflammatory disease of skin. However, the conventional anti-acne therapies are always limited by various side effects, drug resistance, and poor skin permeability. Microneedles (MNs) are emerging topical drug delivery systems capable of noninvasively breaking through the skin stratum corneum barrier to efficiently enhance the transdermal drug penetration. Herein, MNs loaded with intelligent pH-sensitive nanoplatforms were constructed for amplified chemo-photodynamic therapy against acne vulgaris, jointly exerting antimicrobial and anti-inflammatory effects. The photosensitizer indocyanine green (ICG) was loaded into the zeolitic imidazolate framework-8 (ZIF-8) to improve its photostability, which would be triggered by 808 nm laser irradiation to generate cytotoxic reactive oxygen species (ROS) to result in oxidative damage and disturbed metabolic activities of P. acnes. In addition to the efficient drug delivery, the ZIF-8 carrier could selectively degrade in response to the acidic microenvironment of acne lesions, and the released Zn2+ also exhibited a potent antimicrobial activity. The fabricated ZIF-8-ICG@MNs presented an outstanding synergistic anti-acne efficiency both in vitro and in vivo. This bioresponsive microneedle patch is expected to be readily adapted as a generalized, modular strategy for noninvasive therapeutics delivery against superficial skin diseases.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antiinflamatorios/uso terapéutico , Imidazoles/uso terapéutico , Verde de Indocianina/uso terapéutico , Estructuras Metalorgánicas/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Acné Vulgar/patología , Animales , Antibacterianos/química , Antibacterianos/efectos de la radiación , Antibacterianos/toxicidad , Antiinflamatorios/química , Antiinflamatorios/efectos de la radiación , Antiinflamatorios/toxicidad , Células HEK293 , Humanos , Imidazoles/química , Imidazoles/efectos de la radiación , Imidazoles/toxicidad , Verde de Indocianina/química , Verde de Indocianina/efectos de la radiación , Verde de Indocianina/toxicidad , Rayos Infrarrojos , Masculino , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/efectos de la radiación , Estructuras Metalorgánicas/toxicidad , Ratones Endogámicos BALB C , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/toxicidad , Propionibacterium acnes/efectos de los fármacos , Ratas , Piel/efectos de los fármacos , Piel/patología , Porcinos , Zinc/química , Zinc/efectos de la radiación , Zinc/uso terapéutico , Zinc/toxicidad
18.
Biomater Sci ; 9(20): 6772-6786, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636812

RESUMEN

The low oxygen level in tumors significantly reduces the antitumor efficacy of photodynamic therapy (PDT). The provision of O2 and monomeric hydrophobic photosensitizers (PSs) under physiological conditions would greatly help to shrink malignant tumors. We take advantage of the high porosity and multifunctionality of metal-organic frameworks (MOFs) to fabricate a simple all-in-one nanoplatform mediated by microneedle delivery to achieve synergistic O2 evolution and chemophototherapy. An iron(III)-based MOF (MIL-100(Fe)) acted not only as a vehicle for the concurrent delivery of zinc phthalocyanine (ZnPc) and doxorubicin hydrochloride (Dox), but also to supply O2 by decomposing hydrogen peroxide (H2O2) in the tumor microenvironment via a Fenton-like reaction. In vitro and in vivo experiments indicated that the nanoplatform had excellent biocompatibility and exerted enhanced anticancer effects. The encapsulated drug was sustainably released from the nanoplatform skeleton in response to acidic tumor microenvironments. Moreover, upon 660 nm light irradiation, ZnPc effectively produced reactive oxygen species (ROS) due to the reduction of hypoxia by MIL-100(Fe). A microneedle technique was adopted to directly deliver the nanoplatform into superficial tumors rather than via systemic circulation. Hence, this study provides a new strategy for more efficient chemophototherapy of hypoxic superficial tumors.


Asunto(s)
Peróxido de Hidrógeno , Microambiente Tumoral , Compuestos Férricos , Oxígeno
19.
Int J Pharm ; 610: 121223, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34710541

RESUMEN

Swellable microparticles (SMs) provide a potential strategy for achieving sustained inhalation therapy. However, spray dried SMs are highly hygroscopic, exhibiting poor flowability and dispersibility properties. This study aimed at determining whether L-leucine (LL) can improve aerosolization performance of SMs with wrinkled surface and its potential mechanisms. Cryptotanshinone was co-spray dried with chitosan and LL (0-40%, mass fraction in carrier materials), after which the production yield, particle size, density, encapsulation efficiency, morphology, cohesion, crystallinity, surface LL distribution, hygroscopicity, water content and in vitro aerosolization performance of the developed formulations were characterized. In addition, we determined whether LL, as a hydrophobic amino acid, would impair swellability and macrophage phagocytosis of SMs. The possible impact of LL on in vitro drug release, cytotoxicity and anti-fibrosis effects on MRC-5 cells was also investigated. As the LL content increased, LL began to crystallize. At 7.5% LL, water content and hygroscopicity of the SMs were at their lowest. Moreover, at 7.5% LL, surface enrichment increased rapidly after which it achieved a comparatively complete coverage at 20-40% LL. However, LL ≥ 20% caused the formation of over-wrinkled, even dimpled or hollow particles, which significantly deteriorated powder properties. Optimum aerosolization performance was obtained at 10% LL, irrespective of its crystallization behavior, accompanied by the lowest cohesion, optimal flowability and production yield, and without impaired swellability, macrophage uptake and anti-fibrosis efficacy. The optimal formulation did not exhibit optimum surface LL coverage, implying that improvement of aerosolization performance of wrinkled SMs by LL not simply depended on its surface enrichment, but its significant influence on morphology and on related powder properties as well.


Asunto(s)
Inhaladores de Polvo Seco , Fibrosis Pulmonar , Administración por Inhalación , Aerosoles , Humanos , Leucina , Tamaño de la Partícula , Polvos , Terapia Respiratoria , Propiedades de Superficie
20.
Biomaterials ; 277: 121110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482088

RESUMEN

Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.


Asunto(s)
Antineoplásicos , Ferroptosis , Neoplasias , Fotoquimioterapia , Antineoplásicos/uso terapéutico , Glutatión , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA