Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337229

RESUMEN

With the rapid development of the economy and the demands of people's lives, the usage amount of polymer materials is significantly increasing globally. Chlorobenzenes (CBS) are widely used in the industrial, agriculture and chemical industries, particularly as important chemical raw materials during polymers processes. CBS are difficult to remove due to their properties, such as being hydrophobic, volatile and persistent and biotoxic, and they have caused great harm to the ecological environment and human health. Electrochemical oxidation technology for the treatment of refractory pollutants has been widely used due to its high efficiency and easiness of operation. Thus, the electrochemical oxidation system was established for the efficient treatment of monochlorobenzene (MCB) waste gas. The effect of a single factor, such as anode materials, cathode materials, the electrolyte concentration, current density and electrode distance on the removal efficiency (RE) of MCB gas were first studied. The response-surface methodology (RSM) was used to investigate the relationships between different factors' conditions (current density, electrolyte concentration, electrode distance), and a prediction model was established using the Design-Expert 10.0.1 software to optimize the reaction conditions. The results of the one-factor experiments showed that when treating 2.90 g/m3 MCB gas with a 0.40 L/min flow rate, Ti/Ti4O7 as an anode, stainless steel wire mesh as a cathode, 0.15 mol/L NaCl electrolyte, 10.0 mA/cm2 current density and 4.0 cm electrode distance, the average removal efficiency (RE), efficiency capacity (EC) and energy consumption (Esp) were 57.99%, 20.18 g/(m3·h) and 190.2 (kW·h)/kg, respectively. The results of the RSM showed that the effects of the process parameters on the RE of MBC were as follows: current density > electrode distance > electrolyte concentration; the interactions effects on the RE of MBC were in the order of electrolyte concentration and current density > current density and electrode distance > electrolyte concentration and electrode distance; the optimal experimental conditions were as follows: the concentration of electrolyte was 0.149 mol/L, current density was 18.11 mA, electrode distance was 3.804 cm. Under these conditions, the RE achieved 66.43%. The response-surface variance analysis showed that the regression model reached a significant level, and the validation results were in agreement with the predicted results, which proved the feasibility of the model. The model can be applied to treat the CBS waste gas of polymer processes through electrochemical oxidation.

2.
Sci Total Environ ; 912: 168749, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007120

RESUMEN

Rehabilitation of degraded soil health using high-performance and sustainable measures are urgently required for restoring soil primary productivity and mitigating greenhouse gas (GHG) emission of coastal ecosystems. However, the effect of livestock manure derived hydrochar on GHG emission and plant productivity in the coastal salt-affected soils, one of blue carbon (C) ecosystems, was poorly understood. Therefore, a cattle manure hydrochar (CHC) produced at 220 °C was prepared to explore its effects and mechanisms on CH4 and N2O emissions and tomato growth and fruit quality in a coastal soil in comparison with corresponding hydrochars derived from plant straws, i.e., sesbania straw hydrochars (SHC) and reed straw hydrochars (RHC) using a 63-day soil column experiment. The results showed that CHC posed a greater efficiency in reducing the global warming potential (GWP, 54.6 % (36.7 g/m2) vs. 45.5-45.6 % (22.2-30.6 g/m2)) than those of RHC and SHC. For the plant growth, three hydrochars at 3 % (w/w) significantly increased dry biomass of tomato shoot and fruit by 12.4-49.5 % and 48.6-165 %, respectively. Moreover, CHC showed the highest promotion effect on shoot and fruit dry biomass of tomato, followed by SHC ≈ RHC. Application of SHC, CHC and RHC significantly elevated the tomato sweetness compared with CK, with the order of CHC (54.4 %) > RHC (35.6 %) > SHC (22.1 %). Structural equation models revealed that CHC-depressed denitrification and methanogen mainly contributed to decreased GHG emissions. Increased soil phosphorus availability due to labile phosphorus supply from CHC dominantly accounted for elevated tomato growth and fruit production. Comparably, SHC-altered soil properties (e.g., decreased pH and increased total carbon content) determined variations of GHG emission and tomato growth. The findings provide the high-performance strategies to enhance soil primary productivity and mitigate GHG emissions in the blue C ecosystems.


Asunto(s)
Gases de Efecto Invernadero , Solanum lycopersicum , Bovinos , Animales , Suelo , Gases de Efecto Invernadero/análisis , Estiércol , Ecosistema , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Metano/análisis , Fertilizantes/análisis , Carbono , Fósforo , Agricultura/métodos
3.
R Soc Open Sci ; 10(12): 230736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094273

RESUMEN

This paper addresses the problem of robust fault estimation for multi-agent systems (MASs) under communication constraints. Taking into account the possible data packet loss (DPL) in the information interaction of each subsystem, MASs are remodelled as switching systems by introducing a variable sampling strategy. Then, using the local information among agents, a novel intermediate observer design method based on switching scheme is proposed to estimate faults of MASs. Combining Lyapunov's criterion and linear matrix inequality, sufficient conditions for the intermediate observer to be exponentially stable and have H∞ performance against bounded disturbances and the DPL are given. Finally, some simulations are provided to verify the effectiveness of the proposed method.

4.
Mater Today Bio ; 23: 100831, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37881448

RESUMEN

Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.

5.
Redox Biol ; 67: 102907, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797372

RESUMEN

Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid ß-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-ß1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis.


Asunto(s)
Fibroblastos , Canal Aniónico 1 Dependiente del Voltaje , Animales , Ratones , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Fibrosis , Péptidos/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
6.
Polymers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37631478

RESUMEN

With the increasing environmental pollution caused by waste polymers, the conversion of polymer components in biomass into valuable products is of great significance for waste management and resource recovery. A two-stage microbial fuel cell (MFC) was used to treat furfural wastewater in this study. The maximum output voltage was 240-250 mV and the power generation time in an operation cycle was 286 h. The degradation efficiency of furfural reached 99-100% (furfural concentration at 300-3000 mg/L) and was slightly reduced to 91% at 7000 mg/L. In addition, the BOD/COD ratio of the furfural wastewater increased from 0.31 to 0.48 after MFC processing. The molecular analysis of the anodic bacterial isolates indicated that the phylogenetic bacterial mixture was dominated by five active anaerobic bacteria with a similarity percentage above 99% for each strain: Burkholderia (B. burdella), Clostridium sensu stricto (Cymbidaceae), Klebsiella (Klebsiella), Ethanoligenens (anaerobic genus), and Acidocella (anaerobic genus); the mixture exhibited good properties to carry out bioelectricity generation in the microbial fuel cell. This indicates that the MFC has effectively degraded furfural for pollutant removal and power generation and is a promising clean method to treat furfural pollution in industry wastewater.

7.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36787190

RESUMEN

Cardiac fibrosis is associated with an adverse prognosis in cardiovascular disease that results in a decreased cardiac compliance and, ultimately, heart failure. Recent studies have identified the role of long noncoding RNA (lncRNA) in cardiac fibrosis. However, the functions of many lncRNAs in cardiac fibrosis remain to be characterized. Through a whole-transcriptome sequencing and bioinformatics analysis on a mouse model of pressure overload-induced cardiac fibrosis, we screened a key lncRNA termed thrombospondin 1 antisense 1 (THBS1-AS1), which was positively associated with cardiac fibrosis. In vitro functional studies demonstrated that the silencing of THBS1-AS1 ameliorated TGF-ß1 effects on cardiac fibroblast (CF) activation, and the overexpression of THBS1-AS1 displayed the opposite effect. A mechanistic study revealed that THBS1-AS1 could sponge miR-221/222 to regulate the expression of TGFBR1. Moreover, under TGF-ß1 stimulation, the forced expression of miR-221/222 or the knockdown TGFBR1 significantly reversed the THBS1-AS1 overexpression induced by further CF activation. In vivo, specific knockdown of THBS1-AS1 in activated CFs significantly alleviated transverse aorta constriction-induced (TAC-induced) cardiac fibrosis in mice. Finally, we demonstrated that the human THBS1-AS1 can also affect the activation of CFs by regulating TGFBR1. In conclusion, this study reveals that lncRNA THBS1-AS1 is a potentially novel regulator of cardiac fibrosis and may serve as a target for the treatment of cardiac fibrosis.


Asunto(s)
Cardiomiopatías , MicroARNs , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fibrosis , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo
8.
Int J Med Sci ; 19(10): 1603-1614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185327

RESUMEN

Periodontitis is a chronic inflammatory disease that affects tooth-supporting tissues and even leads to tooth loss. NLRP3 inflammasomes play a critical role in periodontitis pathogenesis. Aberrant activation or overexpression of NLRP3 inflammasomes in cellular players, including osteoclasts, osteoblasts, periodontal ligament fibroblasts, and leukocytes often contributes to cellular dysfunction and environment abnormality, thus resulting in the disorganization of ligament and alveolar bone. In this review, we mainly focus on the negative regulation of NLRP3 inflammasome in periodontitis and highlight the importance of NLRP3 inflammasome as a candidate therapeutic target in periodontitis treatment. Then we elucidate the development status of NLRP3 inflammasome inhibitors and show their application potential for treating periodontitis. In summary, this review reveals the recent progress and perspectives of NLRP3 inflammasome and the therapeutic potential of NLRP3 inflammasome inhibitors in periodontitis.


Asunto(s)
Inflamasomas , Periodontitis , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Osteoclastos/patología , Ligamento Periodontal , Periodontitis/tratamiento farmacológico , Periodontitis/patología
9.
Fitoterapia ; 162: 105290, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36064152

RESUMEN

Excess levels of chemical hepatotoxicants (alcohol, aflatoxin B1), oxidative drugs (acetaminophen) and some cytokines (ET-1, TGF-ß1) can induce chronic or acute liver injury. After these, the severe hepatic disease, especially the liver fibrosis (LF) occurs without taking measures, which brings threat to human health. The dibenzocyclooctadiene lignans of S. chinensis (SCDLs) were found to act as the hepatoprotective components via blocking endothelin B receptor (ETBR). While study on its anti-LF mechanisms especially for its refined compound of schisantherin D (SC-D) is still a lack. So this study aims to investigate the anti-fibrosis effect of SC-D with in vitro and in vivo assays. Bioinformatics analysis revealed the close relations of ETBR to Smad2, Smad3, Nrf2, etc. in LF-related signaling pathways (such as TGF-ß/Smad and Nrf2/ARE). Histopathological staining on livers showed the recovery trend in SC-D treated LF mice. SC-D also modulated expressions of ETBR and fibrosis or anti-oxidative related proteins (such as TIMP1, p-Smad2/3, Nrf2, Smad7, etc.) in LF mice livers. Serum levels of TNF-α, COLI, ALT, AST and LDH in SC-D treated mice were also downregulated compared with LF mice, and upregulated expression of GSH. In vitro studies, SC-D also modulated expressions of LF-related proteins to the normal tendency in LX-2 cell, while weakened its anti- LX-2 proliferation effect by transfections of si-Smad7 or si-Nrf2. Accordingly the anti-LF approach of SC-D showed relations with modulating ETBR linked fibrosis and anti-oxidative related signaling. Also, Smad7 and Nrf2 might be the key factors for SC-D mediated anti-LF effect.


Asunto(s)
Lignanos , Schisandra , Acetaminofén , Aflatoxina B1 , Animales , Dioxoles , Humanos , Lignanos/farmacología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Ratones , Estructura Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Receptor de Endotelina B/uso terapéutico , Schisandra/química , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa
10.
Front Pharmacol ; 13: 940768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003513

RESUMEN

Cardiac hypertrophy initially serves as an adaptive response to physiological and pathological stimuli. Sustained hypertrophy progress to pathological cardiac hypertrophy, cardiac fibrosis and ultimately lead to heart failure, one of the leading medical causes of mortality worldwide. Intervention of pathological cardiac hypertrophy can effectively reduce the occurrence of heart failure. Abundant factors, such as adrenergic, angiotensin, and endothelin (ET-1) receptors, have been shown to participate in the regulation of pathological cardiac hypertrophy. Recently, an increasing number of studies have indicated that circRNA and circRNA-miRNA-mRNA network regulation is indispensable for the posttranscriptional regulation of mRNA in cardiac hypertrophy. In our study, the morphological, cardiac function and pathological changes during cardiac hypertrophy were investigated. RNA sequencing identified 93 circRNAs that were differentially expressed in the TAC_2w group, and 55 circRNAs in the TAC_4w group compared with the sham group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified several significant pathways, including hypertrophic cardiomyopathy, extracellular matrix (ECM)-receptor interaction and focal adhesion. Coexpression analyses were performed for differentially expressed circRNAs and differentially expressed mRNAs. Based on gene set enrichment analysis (GSEA), 8 circRNAs (mmu-Nfkb1_0001, mmu-Smad4_0007, mmu-Hecw2_0009, mmu-Itgbl1_0002, mmu-Lrrc2_0005, mmu-Cpeb3_0007, mmu-Ryr2_0040, and mmu-Rtn4_0001) involved in cardiac hypertrophy and cardiac fibrosis were identified. We validated some key circRNAs by qPCR. The crucial coexpression of circRNA-mRNA and its interaction with miRNA showed the possible mechanism of circRNAs in the process of cardiac dysfunction. Our results may provide promising targets for the treatment of pathological cardiac hypertrophy and fibrosis.

11.
Mater Horiz ; 9(7): 1969-1977, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35583553

RESUMEN

The development of liposome-based drugs was severely limited due to inefficient loading strategies. Herein, we developed a click reaction-mediated loading procedure by designing an enzyme-sensitive maleimide (MAL) tag for ferrying chemotherapeutics into preformed liposomes containing glutathione (GSH). Based on this strategy, various hydrophobic drugs could be encapsulated into liposomes within 5-30 min with encapsulation efficiency >95% and loading capacity of 10-30% (w/w). The entrapped cargo could be slowly released from the liposomes, followed by rapid enzyme-mediated conversion into active drugs to exert antitumor activity under physiological conditions. The resulting drug-loaded liposomes significantly prolonged the blood circulation of cargos and displayed more potent in vivo antitumor efficacy than free drugs at the equitoxic dose. More importantly, this method is a remote drug loading strategy in nature, which is suitable for industrial production. This is the first demonstration of active loading of MAL-tagged chemotherapeutics in liposomes for improved antitumor efficacies, which has the potential to serve as a universal drug loading strategy for the development of liposomal formulations of chemotherapeutics.


Asunto(s)
Liposomas , Composición de Medicamentos , Liposomas/química
12.
Tissue Eng Regen Med ; 19(4): 823-837, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35467329

RESUMEN

BACKGROUND: Although newly formed constructs of feasible pressure-preadjusted bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) showed biomechanical flexibility and superior capacity for cartilage regeneration, it is still not very clear how BMSCs and seed cells feel mechanical stimuli and convert them into biological signals, and the difference in signal transduction underlying mechanical and chemical cues is also unclear. METHODS: To determine whether mechanical stimulation (hydrostatic pressure) and chemical cues (platelet-rich fibrin, PRF) activate canonical or noncanonical Wnt signaling in BMSCs, BMSCs cocultured with PRF were subjected to hydrostatic pressure loading, and the activation of the Wnt signaling molecules and expression of cartilage-associated proteins and genes were determined by western blotting and polymerase chain reaction (PCR). Inhibitors of canonical or noncanonical Wnt signaling, XVX-939 or L690,330, were adopted to investigate the role of Wnt signaling molecules in mechanically promoted chondrogenic differentiation of BMSCs. RESULTS: Hydrostatic pressure of 120 kPa activated both Wnt/ß-catenin signaling and Wnt/Ca2+ signaling, with the the maximum promotion effect at 60 min. PRF exerted no synergistic effect on Wnt/ß-catenin signaling activation. However, the growth factors released by PRF might reverse the promotion effects of pressure on Wnt/Ca2+ signaling. Real-time PCR and Western blotting results showed that pressure could activate the expression of Col-II, Sox9, and aggrecan in BMSCs cocultured with PRF. Blocking experiment found a positive role of Wnt/ß-catenin signaling, and a negative role of Wnt/Ca2+ signaling in chondrogenic differentiation of the BMSCs. Mutual inhibition exists between canonical and noncanonical Wnt signaling in BMSCs under pressure. CONCLUSION: Wnt signaling participates in the pressure-promoted chondrogenesis of the BMSCs co-cultured with PRF, with canonical and noncanonical pathways playing distinct roles during the process.


Asunto(s)
Células Madre Mesenquimatosas , Fibrina Rica en Plaquetas , Células Cultivadas , Condrogénesis , Células Madre Mesenquimatosas/metabolismo , Fibrina Rica en Plaquetas/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
13.
Front Genet ; 12: 691391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306031

RESUMEN

Hepatocellular carcinoma (HCC), one of the most common and lethal tumors worldwide, is usually not diagnosed until the disease is advanced, which results in ineffective intervention and unfavorable prognosis. Small molecule targeted drugs of HCC, such as sorafenib, provided only about 2.8 months of survival benefit, partially due to cancer stem cell resistance. There is an urgent need for the development of new treatment strategies for HCC. Tumor immunotherapies, including immune check point inhibitors, chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAb), have shown significant potential. It is known that the expression level of glypican-3 (GPC3) was significantly increased in HCC compared with normal liver tissues. A bispecific antibody (GPC3-S-Fabs) was reported to recruit NK cells to target GPC3 positive cancer cells. Besides, bispecific T-cell Engagers (BiTE), including GPC3/CD3, an aptamer TLS11a/CD3 and EpCAM/CD3, were recently reported to efficiently eliminate HCC cells. It is known that immune checkpoint proteins programmed death-1 (PD-1) binding by programmed cell death-ligand 1 (PD-L1) activates immune checkpoints of T cells. Anti-PD-1 antibody was reported to suppress HCC progression. Furthermore, GPC3-based HCC immunotherapy has been shown to be a curative approach to prolong the survival time of patients with HCC in clinically trials. Besides, the vascular endothelial growth factor (VEGF) inhibitor may inhibit the migration, invasion and angiogenesis of HCC. Here we review the cutting-edge progresses on mechanisms and clinical trials of HCC immunotherapy, which may have significant implication in our understanding of HCC and its immunotherapy.

14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(3): 574-582, 2021 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-34180204

RESUMEN

Long non-coding RNA (lncRNA) Dnm3os plays a critical role in peritendinous fibrosis and pulmonary fibrosis, but its role in the process of cardiac fibrosis is still unclear. Therefore, we carried out study by using the myocardial fibrotic tissues obtained by thoracic aortic constriction (TAC) in an early study of our group, and the in vitro cardiac fibroblast activation model induced by transforming growth factor-ß1 (TGF-ß1). Quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and collagen gel contraction test were used to identify the changes of activation phenotype and the expression of Dnm3os in cardiac fibroblasts. Small interfering RNA was used to silence Dnm3os to explore its role in the activation of cardiac fibroblasts. The results showed that the expression of Dnm3os was increased significantly in myocardial fibrotic tissues and in the activated cardiac fibroblasts. And the activation of cardiac fibroblasts could be alleviated by Dnm3os silencing. Furthermore, the TGF-ß1/Smad2/3 pathway was activated during the process of cardiac fibroblasts activation, while was inhibited after silencing Dnm3os. The results suggest that Dnm3os silencing may affect the process of cardiac fibroblast activation by inhibiting TGF-ß1/Smad2/3 signal pathway. Therefore, interfering with the expression of lncRNA Dnm3os may be a potential target for the treatment of cardiac fibrosis.


Asunto(s)
ARN Largo no Codificante , Fibroblastos , Fibrosis , Humanos , Miocardio/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1
15.
Front Pharmacol ; 12: 671809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025431

RESUMEN

Mechanosensing and mechanotransduction are vital processes in mechanobiology and play critical roles in regulating cellular behavior and fate. There is increasing evidence that purinergic P2 receptors, members of the purinergic family, play a crucial role in cellular mechanotransduction. Thus, information on the specific mechanism of P2 receptor-mediated mechanotransduction would be valuable. In this review, we focus on purinergic P2 receptor signaling pathways and describe in detail the interaction of P2 receptors with other mechanosensitive molecules, including transient receptor potential channels, integrins, caveolae-associated proteins and hemichannels. In addition, we review the activation of purinergic P2 receptors and the role of various P2 receptors in the regulation of various pathophysiological processes induced by mechanical stimuli.

16.
Front Pharmacol ; 12: 627773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679406

RESUMEN

Cardiac fibroblasts (CFs) activation is a hallmark feature of cardiac fibrosis caused by cardiac remodeling. The purinergic signaling molecules have been proven to participate in the activation of CFs. In this study, we explored the expression pattern of P2Y receptor family in the cardiac fibrosis mice model induced by the transverse aortic constriction (TAC) operation and in the activation of CFs triggered by transforming growth factor ß1 (TGF-ß1) stimulation. We then investigated the role of P2Y1receptor (P2Y1R) in activated CFs. The results showed that among P2Y family members, only P2Y1R was downregulated in the heart tissues of TAC mice. Consistent with our in vivo results, the level of P2Y1R was decreased in the activated CFs, when CFs were treated with TGF-ß1. Silencing P2Y1R expression with siP2Y1R accelerated the effects of TGF-ß1 on CFs activation. Moreover, the P2Y1R selective antagonist BPTU increased the levels of mRNA and protein of profibrogenic markers, such as connective tissue growth factor (CTGF), periostin (POSTN). periostin (POSTN), and α-smooth muscle actin(α-SMA). Further, MRS2365, the agonist of P2Y1R, ameliorated the activation of CFs and activated the p38 MAPK and ERK signaling pathways. In conclusion , our findings revealed that upregulating of P2Y1R may attenuate the abnormal activation of CFs via the p38 MAPK and ERK signaling pathway.

17.
Oxid Med Cell Longev ; 2020: 7956274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566102

RESUMEN

P2X7 purinergic receptor (P2X7R) has been implicated in several cardiovascular diseases. However, whether it regulates cardiac fibrosis remains elusive. Herein, its involvement in the development of cardiac fibrosis was examined using a transverse aortic constriction (TAC) mice model and cardiac fibroblasts (CFs) hyperstimulated by TGF-ß1 for 48 hours. Results showed that TAC and TGF-ß1 treatment increased the expression of P2X7R. Silencing of P2X7R expression with siP2X7R ameliorated TGF-ß1 effects on fibroblasts activation. Similarly, P2X7R inhibition by Brilliant Blue G (BBG) reduced mRNA and protein levels of profibrosis markers, while the P2X7R agonist BzATP accelerated the TGF-ß1-induced CFs activation. Moreover, it was found that TGF-ß1-induced CFs activation was mediated by the NLRP3/IL-1ß inflammasome pathway. BBG or siP2X7R treatment suppressed NLRP3/IL-1ß pathway signaling. In vivo, BBG significantly alleviated TAC-induced cardiac fibrosis, cardiac dysfunction, and NLRP3/IL-1ß activation. Collectively, our findings imply that suppressing P2X7R may limit cardiac fibrosis and abnormal activation of CFs.


Asunto(s)
Interleucina-1beta/metabolismo , Miocardio/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Citoprotección/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Masculino , Ratones Endogámicos C57BL , Modelos Cardiovasculares , Presión , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(3): 450-459, 2020 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-32597087

RESUMEN

Calnexin is a lectin-like molecular chaperone protein on the endoplasmic reticulum, mediating unfolded protein responses, the endoplasmic reticulum Ca 2+ homeostasis, and Ca 2+ signals conduction. In recent years, studies have found that calnexin plays a key role in the heart diseases. This study aims to explore the role of calnexin in the activation of cardiac fibroblasts. A transverse aortic constriction (TAC) mouse model was established to observe the activation of cardiac fibroblasts in vivo, and the in vitro cardiac fibroblasts activation model was established by transforming growth factor ß1 (TGFß1) stimulation. The adenovirus was respectively used to gene overexpression and silencing calnexin in cardiac fibroblasts to elucidate the relationship between calnexin and cardiac fibroblasts activation, as well as the possible underlying mechanism. We confirmed the establishment of TAC model by echocardiography, hematoxylin-eosin, Masson, and Sirius red staining, and detecting the expression of cardiac fibrosis markers in cardiac tissues. After TGFß1 stimulation, markers of the activation of cardiac fibroblast, and proliferation and migration of cardiac fibroblast were detected by quantitative PCR, Western blot, EdU assay, and wound healing assay respectively. The results showed that the calnexin expression was reduced in both the TAC mice model and the activated cardiac fibroblasts. The overexpression of calnexin relieved cardiac fibroblasts activation, in contrast, the silencing of calnexin promoted cardiac fibroblasts activation. Furthermore, we found that the endoplasmic reticulum stress was activated during cardiac fibroblasts activation, and endoplasmic reticulum stress was relieved after overexpression of calnexin. Conversely, after the silencing of calnexin, endoplasmic reticulum stress was further aggravated, accompanying with the activation of cardiac fibroblasts. Our data suggest that the overexpression of calnexin may prevent cardiac fibroblasts against activation by alleviating endoplasmic reticulum stress.


Asunto(s)
Calnexina , Fibroblastos , Corazón , Chaperonas Moleculares , Animales , Calnexina/fisiología , Estrés del Retículo Endoplásmico , Fibroblastos/fisiología , Corazón/fisiología , Ratones
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(3): 331-336, 2020 May.
Artículo en Chino | MEDLINE | ID: mdl-32543138

RESUMEN

OBJECTIVE: The purpose of this study is to investigate the injury of liver and kidney tissues in overload pressure induced cardiac hypertrophy/heart failure mice model and the changes of macrophage activation level. METHODS: 6-8 week-old C57BL/6 mice were subjected to transverse aortic constriction (TAC) surgery to establish the cardiac hypertrophy/heart failure mouse model induced by pressure overload, while the aortic was not ligated in the Sham group. At 4 weeks and 8 weeks after TAC, the mice of each group were subjected to echocardiography and blood collection. And mice were sacrificed to collect samples of the heart, liver, and kidney tissues. The contents of plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil) and serum creatinine (Scr) in Sham group and two operation groups were determined. The histological changes of liver, heart and kidney tissues were observed by HE staining, and the expression of the marker of macrophage activation, F4/80 protein, was detected in the heart, liver and kidney tissue by immunohistochemical staining. RESULTS: Cardiac hypertrophy occurred at 4 weeks after TAC operation in C57BL/6 mice and developed into heart failure at 8 weeks after TAC. The echocardiography showed that, compared with the Sham group, the left ventricular end-diastolic posterior wall thickness (LVPWd) and the left ventricular internal diameter in diastole (LVIDd) were significantly increased, while the left ventricular ejection fraction (EF) and the left ventricular fractional shortening (FS) were significantly decreased ( P<0.05) in the 4-week-TAC group and 8-week-TAC group. The plasma content of ALT, AST, TBil and Scr in the 4-week-TAC group and 8-week-TAC group were significantly higher than those in the Sham group ( P<0.05). HE staining showed obvious liver pathological changes in TAC mice, such as vacuolation, mild hepatic sinusoid congestion and inflammatory infiltration in mice post 4 weeks after surgery, and such liver injury was worse in mice post 8 weeks after surgery. Besides, there was a slight damage in renal tissue shown by HE staining, such as slight glomerular injury and slight bleeding. F4/80 protein immunohistochemical staining results demonstrated that the activation of macrophages in the heart and liver in the 4-week-TAC group and 8-week-TAC group was significantly increased than that in the sham group ( P<0.05), but there was no significant difference in kidney tissues in groups. CONCLUSION: Macrophages are involved in the process of liver and kidney injury in cardiac hypertrophy/heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Función Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Riñón/lesiones , Hígado/lesiones , Macrófagos , Ratones , Ratones Endogámicos C57BL , Volumen Sistólico
20.
Oxid Med Cell Longev ; 2020: 9423593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308810

RESUMEN

Mitochondrial DNA (mtDNA) damage is associated with the development of cardiovascular diseases. Cardiac aging plays a central role in cardiovascular diseases. There is accumulating evidence linking cardiac aging to mtDNA damage, including mtDNA mutation and decreased mtDNA copy number. Current wisdom indicates that mtDNA is susceptible to damage by mitochondrial reactive oxygen species (mtROS). This review presents the cellular and molecular mechanisms of cardiac aging, including autophagy, chronic inflammation, mtROS, and mtDNA damage, and the effects of mitochondrial biogenesis and oxidative stress on mtDNA. The importance of nucleoid-associated proteins (Pol γ), nuclear respiratory factors (NRF1 and NRF2), the cGAS-STING pathway, and the mitochondrial biogenesis pathway concerning the development of mtDNA damage during cardiac aging is discussed. Thus, the repair of damaged mtDNA provides a potential clinical target for preventing cardiac aging.


Asunto(s)
Envejecimiento/metabolismo , Sistema Cardiovascular/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA