Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5056, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871792

RESUMEN

Type 2 innate lymphoid cells (ILC2) initiate early allergic inflammation in the lung, but the factors that promote subsequent resolution of type 2 inflammation and prevent prolonged ILC2 activation are not fully known. Here we show that SLAM-family receptors (SFR) play essential roles in this process. We demonstrate dynamic expression of several SFRs on ILC2s during papain-induced type 2 immunity in mice. SFR deficiency exacerbates ILC2-driven eosinophil infiltration in the lung, and results in a significant increase in IL-13 production by ILC2s exclusively in mediastinal lymph nodes (MLN), leading to increased dendritic cell (DC) and TH2 cell numbers. In MLNs, we observe more frequent interaction between ILC2s and bystander T cells, with T cell-expressed SFRs (especially SLAMF3 and SLAMF5) acting as self-ligands to suppress IL-13 production by ILC2s. Mechanistically, homotypic engagement of SFRs at the interface between ILC2s and T cells delivers inhibitory signaling primarily mediated by SHIP-1. This prevents activation of NF-κB, driven by IL-7 and IL-33, two major drivers of ILC2-mediated type 2 immunity. Thus, our study shows that an ILC2-DC-TH2 regulatory axis may promote the resolution of pulmonary type 2 immune responses, and highlights SLAMF3/SLAMF5 as potential therapeutic targets for ameliorating type 2 immunity.


Asunto(s)
Inmunidad Innata , Inflamación , Pulmón , Linfocitos , Ratones Endogámicos C57BL , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Animales , Ratones , Inflamación/inmunología , Inflamación/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Pulmón/inmunología , Pulmón/patología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Papaína , Células Th2/inmunología , Interleucina-13/metabolismo , Interleucina-13/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Interleucina-33/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones Noqueados , Transducción de Señal , FN-kappa B/metabolismo
2.
Cell Mol Immunol ; 21(7): 662-673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740922

RESUMEN

Eomesodermin (Eomes) is a critical factor in the development of natural killer (NK) cells, but its precise role in temporal and spatial coordination during this process remains unclear. Our study revealed that Eomes plays distinct roles during the early and late stages of NK cell development. Specifically, the early deletion of Eomes via the CD122-Cre transgene resulted in significant blockade at the progenitor stage due to the downregulation of KLF2, another important transcription factor. ChIP-seq revealed direct binding of Eomes to the conserved noncoding sequence (CNS) of Klf2. Utilizing the CHimeric IMmune Editing (CHIME) technique, we found that deletion of the CNS region of Klf2 via CRISPRi led to a reduction in the NK cell population and developmental arrest. Moreover, constitutive activation of this specific CNS region through CRISPRa significantly reversed the severe defects in NK cell development caused by Eomes deficiency. Conversely, Ncr1-Cre-mediated terminal deletion of Eomes expedited the transition of NK cell subsets from the CD27+CD11b+ phenotype to the CD27-CD11b+ phenotype. Late-stage deficiency of Eomes led to a significant increase in T-bet expression, which subsequently increased the expression of the transcription factor Zeb2. Genetic deletion of one allele of Tbx21, encoding T-bet, effectively reversed the aberrant differentiation of Eomes-deficient NK cells. In summary, we utilized two innovative genetic models to elucidate the intricate mechanisms underlying Eomes-mediated NK cell commitment and differentiation.


Asunto(s)
Células Asesinas Naturales , Factores de Transcripción de Tipo Kruppel , Proteínas de Dominio T Box , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Animales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Diferenciación Celular , Ratones Endogámicos C57BL
3.
Adv Sci (Weinh) ; 11(21): e2309315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544346

RESUMEN

Vps34 is the unique member of the class III phosphoinositide 3-kinase family that performs both vesicular transport and autophagy. Its role in natural killer (NK) cells remains uncertain. In this study, a model without Vps34 (Vps34fl/fl/CD122Cre/+) is generated, deleting Vps34 during and after NK-cell commitment. These mice exhibit a nearly 90% decrease in NK cell count and impaired differentiation. A mechanistic study reveals that the absence of Vps34 disrupts the transport of IL-15 receptor subunit alpha CD122 to the cell membrane, resulting in reduced responsiveness of NK cells to IL-15. In mice lacking Vps34 at the terminal stage of NK-cell development (Vps34fl/fl/Ncr1Cre/+), NK cells gradually diminish during aging. This phenotype is associated with autophagy deficiency and the stress induced by reactive oxygen species (ROS). Therefore, terminally differentiated NK cells lacking Vps34 display an accelerated senescence phenotype, while the application of antioxidants effectively reverses the senescence caused by Vps34 deletion by neutralizing ROS. In summary, this study unveils the dual and unique activity of Vps34 in NK cells. Vps34-mediated vesicular transport is crucial for CD122 membrane trafficking during NK cell commitment, whereas Vps34-mediated autophagy can delay NK cell senescence.


Asunto(s)
Diferenciación Celular , Senescencia Celular , Fosfatidilinositol 3-Quinasas Clase III , Células Asesinas Naturales , Animales , Ratones , Autofagia/fisiología , Autofagia/genética , Diferenciación Celular/genética , Senescencia Celular/genética , Senescencia Celular/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
4.
Front Immunol ; 11: 617404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33633735

RESUMEN

The role of PI3K-mTOR pathway in regulating NK cell development has been widely reported. However, it remains unclear whether NK cell development depends on the protein kinase B (PKB), which links PI3K and mTOR, perhaps due to the potential redundancy of PKB. PKB has two phosphorylation sites, threonine 308 (T308) and serine 473 (S473), which can be phosphorylated by phosphoinositide-dependent protein kinase-1 (PDK1) and mTORC2, respectively. In this study, we established a mouse model in which PKB was inactivated through the deletion of PDK1 and Rictor, a key component of mTORC2, respectively. We found that the single deletion of PDK1 or Rictor could lead to a significant defect in NK cell development, while combined deletion of PDK1 and Rictor severely hindered NK cell development at the early stage. Notably, ectopic expression of myristoylated PKB significantly rescued this defect. In terms of mechanism, in PDK1/Rictor-deficient NK cells, E4BP4, a transcription factor for NK cell development, was less expressed, and the exogenous supply of E4BP4 could alleviate the developmental defect of NK cell in these mice. Besides, overexpression of Bcl-2 also helped the survival of PDK1/Rictor-deficient NK cells, suggesting an anti-apoptotic role of PKB in NK cells. In summary, complete phosphorylation of PKB at T308 and S473 by PDK1 and mTORC2 is necessary for optimal NK cell development, and PKB regulates NK cell development by promoting E4BP4 expression and preventing cell apoptosis.


Asunto(s)
Células Asesinas Naturales/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Animales , Diferenciación Celular/inmunología , Activación Enzimática/inmunología , Células Asesinas Naturales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/inmunología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/inmunología , Transducción de Señal/inmunología
5.
Cell Death Differ ; 26(10): 1918-1928, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30622306

RESUMEN

Phosphoinositide-dependent kinase-1 (PDK1) is an important enzyme for immune cell development by connecting PI3K to downstream mTOR signaling. It is needed to investigate how PDK1 spatiotemporally orchestrates NK cells development and whether this kinase is required for NK cells effector function. In this study, we used three genetic models to delete pdk1 at respective developmental stages, including hematopoietic stem cells (Vav1-Cre used), NK cell progenitor (NKp, CD122-Cre used) and terminal NK cells (Ncr1-Cre used). We found that CD122-Cre mediated deletion of pdk1 caused a severe loss of NK cells to an extent comparable to that of deletion by Vav1-Cre, and further revealed that PDK1 was necessary for NK cells master transcription factor E4BP4 expression at the NKp stage. Moreover, Ncr1-Cre-mediated inactivation of pdk1 delayed NK cells terminal differentiation. These PDK1-deficient NK cells secreted decreased amounts of the cytokine IFN-γ, likely due to impaired downstream mTOR activation. They also exhibited reduced degranulation in response to tumor cells. Mechanistically, PDK1 was critical for the formation of NK-target conjugates and lytic synapses. Therefore, we clarify the stage-specific roles of the metabolic regulator PDK1 in NK cells biology.


Asunto(s)
Células Asesinas Naturales/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...