Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 7(1): 121, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035227

RESUMEN

Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) confers poor prognosis and is found in approximately 25% of cases of acute myeloid leukemia (AML). Although FLT3 inhibitors have shown clinical benefit in patients with AML harboring FLT3-ITD, the therapeutic effect is limited. Here, to explore alternative therapeutics, we established a cellular model of monoallelic FLT3ITD/WT cells using the CRISPR-Cas9 system in a human myeloid leukemia cell line, K562. cDNA microarray analysis revealed elevated CD52 expression in K562-FLT3ITD/WT cells compared to K562-FLT3WT/WT cells, an observation that was further confirmed by quantitative real-time-PCR and flow cytometric analyses. The elevated expression of CD52 in K562-FLT3ITD/WT cells was decreased in wild-type FLT3 (FLT3-WT) knock-in K562-FLT3ITD/WT cells. In K562-FLT3ITD/WT cells, a STAT5 inhibitor, pimozide, downregulated CD52 protein expression while an AKT inhibitor, afuresertib, did not affect CD52 expression. Notably, an anti-CD52 antibody, alemtuzumab, induced significant antibody-dependent cell-mediated cytotoxicity (ADCC) in K562-FLT3ITD/WT cells compared to K562-FLT3WT/WT cells. Furthermore, alemtuzumab significantly suppressed the xenograft tumor growth of K562-FLT3ITD/WT cells in severe combined immunodeficiency (SCID) mice. Taken together, our data suggested that genetically modified FLT3-ITD knock-in human myeloid leukemia K562 cells upregulated CD52 expression via activation of STAT5, and alemtuzumab showed an antitumor effect via induction of ADCC in K562-FLT3ITD/WT cells. Our findings may allow establishment of a new therapeutic option, alemtuzumab, to treat leukemia with the FLT3-ITD mutation.

2.
Cell Death Discov ; 6(1): 127, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33298865

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleura that is currently incurable due to the lack of an effective early diagnostic method and specific medication. The CDKN2A (p16) and NF2 genes are both frequently mutated in MPM. To understand how these mutations contribute to MPM tumor growth, we generated NF2/p16 double-knockout (DKO) cell clones using human MeT-5A and HOMC-B1 mesothelial cell lines. Cell growth and migration activities were significantly increased in DKO compared with parental cells. cDNA microarray analysis revealed differences in global gene expression profiles between DKO and parental cells. Quantitative PCR and western blot analyses showed upregulation of CD24 concomitant with increased phosphorylation of AKT, p70S6K, and c-Jun in DKO clones. This upregulation was abrogated by exogenous expression of NF2 and p16. CD24 knockdown in DKO cells significantly decreased TGF-ß1 expression and increased expression of E-cadherin, an epithelial-mesenchymal transition marker. CD24 was highly expressed in human mesothelioma tissues (28/45 cases, 62%) and associated with the loss of NF2 and p16. Public data analysis revealed a significantly shorter survival time in MPM patients with high CD24 gene expression levels. These results strongly indicate the potential use of CD24 as a prognostic marker as well as a novel diagnostic and therapeutic target for MPM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...