Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37046649

RESUMEN

The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.

3.
Immun Ageing ; 12: 6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157468

RESUMEN

BACKGROUND: Ineffective induction of T cell mediated immunity in older individuals remains a persistent challenge for vaccine development. Thus, there is a need for more efficient and sophisticated adjuvants that will complement novel vaccine strategies for the elderly. To this end, we have investigated a previously optimized, combined molecular adjuvant, CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity), incorporating two complementary Toll-like receptor agonists, CpG and polyI:C, a class-II epitope, and interferon (IFN)-γ in aged mice. FINDINGS: In aged mice with typical features of immunosenescence, antigen specific CD8+ T cell responses were stimulated after serial vaccinations with CASAC or Complete/Incomplete Freund's Adjuvant (CFA/IFA) and a class I epitope, deriving either from ovalbumin (SIINFEKL, SIL) or the melanoma-associated self-antigen, tyrosinase-related protein-2 (SVYDFFVWL, SVL). Pentamer analysis revealed that aged, CASAC/SIL-vaccinated animals had substantially higher frequencies of H-2K(b)/SIL-specific CD8+ T cells compared to the CFA/IFA-vaccinated groups. Similarly, higher frequencies of H-2K(b)/SVL-pentamer+ and IFN-γ+ CD8+ T cells were detected in the aged, CASAC + SVL-vaccinated mice than in their CFA/IFA-vaccinated counterparts. In both antigen settings, CASAC promoted significantly better functional CD8+ T cell activity. CONCLUSION: These studies demonstrate that functional CD8+ T cells, specific for both foreign and tumour-associated self-antigens, can be effectively induced in aged immunosenescent mice using the novel multi-factorial adjuvant CASAC.

4.
PLoS One ; 9(2): e88735, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24551145

RESUMEN

Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteínas del Sistema Complemento/inmunología , Antígenos de Histocompatibilidad/inmunología , Inmunidad/inmunología , Macaca fascicularis/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Macaca fascicularis/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Resultado del Tratamiento , Vacunación , Vacunas de Productos Inactivados/inmunología
5.
Retrovirology ; 9: 56, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22799593

RESUMEN

BACKGROUND: Current data suggest that an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine should elicit both adaptive humoral and cell mediated immune responses. Such a vaccine will also need to protect against infection from a range of heterologous viral variants. Here we have developed a simian-human immunodeficiency virus (SHIV) based model in cynomolgus macaques to investigate the breadth of protection conferred by HIV-1W61D recombinant gp120 vaccination against SHIVsbg and SHIVSF33 challenge, and to identify correlates of protection. RESULTS: High titres of anti-envelope antibodies were detected in all vaccinees. The antibodies reacted with both the homologous HIV-1W61D and heterologous HIV-1IIIB envelope rgp120 which has an identical sequence to the SHIVsbg challenge virus. Significant titres of virus neutralising antibodies were detected against SHIVW61D expressing an envelope homologous with the vaccine, but only limited cross neutralisation against SHIVsbg, SHIV-4 and SHIVSF33 was observed. Protection against SHIVsbg infection was observed in vaccinated animals but none was observed against SHIVSF33 challenge. Transfer of immune sera from vaccinated macaques to naive recipients did not confer protection against SHIVsbg challenge. In a follow-up study, T cell proliferative responses detected after immunisation with the same vaccine against a single peptide present in the second conserved region 2 of HIV-1 W61D and HIV-1 IIIB gp120, but not SF33 gp120. CONCLUSIONS: Following extended vaccination with a HIV-1 rgp120 vaccine, protection was observed against heterologous virus challenge with SHIVsbg, but not SHIVSF33. Protection did not correlate with serological responses generated by vaccination, but might be associated with T cell proliferative responses against an epitope in the second constant region of HIV-1 gp120. Broader protection may be obtained with recombinant HIV-1 envelope based vaccines formulated with adjuvants that generate proliferative T cell responses in addition to broadly neutralising antibodies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/terapia , VIH-1/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Estudios de Seguimiento , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Sueros Inmunes/administración & dosificación , Sueros Inmunes/inmunología , Inmunización , Macaca fascicularis , Pruebas de Neutralización , ARN Viral/análisis , ARN Viral/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Factores de Tiempo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Carga Viral
6.
Retrovirology ; 8(1): 8, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21291552

RESUMEN

BACKGROUND: Vaccination with live attenuated SIV can protect against detectable infection with wild-type virus. We have investigated whether target cell depletion contributes to the protection observed. Following vaccination with live attenuated SIV the frequency of intestinal CD4+CCR5+ T cells, an early target of wild-type SIV infection and destruction, was determined at days 3, 7, 10, 21 and 125 post inoculation. RESULTS: In naive controls, modest frequencies of intestinal CD4+CCR5+ T cells were predominantly found within the LPL TTrM-1 and IEL TTrM-2 subsets. At day 3, LPL and IEL CD4+CCR5+ TEM cells were dramatically increased whilst less differentiated subsets were greatly reduced, consistent with activation-induced maturation. CCR5 expression remained high at day 7, although there was a shift in subset balance from CD4+CCR5+ TEM to less differentiated TTrM-2 cells. This increase in intestinal CD4+CCR5+ T cells preceded the peak of SIV RNA plasma loads measured at day 10. Greater than 65.9% depletion of intestinal CD4+CCR5+ T cells followed at day 10, but overall CD4+ T cell homeostasis was maintained by increased CD4+CCR5- T cells. At days 21 and 125, high numbers of intestinal CD4+CCR5- naive TN cells were detected concurrent with greatly increased CD4+CCR5+ LPL TTrM-2 and IEL TEM cells at day 125, yet SIV RNA plasma loads remained low. CONCLUSIONS: This increase in intestinal CD4+CCR5+ T cells, following vaccination with live attenuated SIV, does not correlate with target cell depletion as a mechanism of protection. Instead, increased intestinal CD4+CCR5+ T cells may correlate with or contribute to the protection conferred by vaccination with live attenuated SIV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...